Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309045046> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4309045046 abstract "Data estimation is conducted with model-based estimation methods since the beginning of digital communications. However, motivated by the growing success of machine learning, current research focuses on replacing model-based data estimation methods by data-driven approaches, mainly neural networks (NNs). In this work, we particularly investigate the incorporation of existing model knowledge into data-driven approaches, which is expected to lead to complexity reduction and / or performance enhancement. We describe three different options, namely model-inspired'' pre-processing, choosing an NN architecture motivated by the properties of the underlying communication system, and inferring the layer structure of an NN with the help of model knowledge. Most of the current publications on NN-based data estimation deal with general multiple-input multiple-output communication (MIMO) systems. In this work, we investigate NN-based data estimation for so-called unique word orthogonal frequency division multiplexing (UW-OFDM) systems. We highlight differences between UW-OFDM systems and general MIMO systems one has to be aware of when using NNs for data estimation, and we introduce measures for successful utilization of NN-based data estimators in UW-OFDM systems. Further, we investigate the use of NNs for data estimation when channel coded data transmission is conducted, and we present adaptions to be made, such that NN-based data estimators provide satisfying performance for this case. We compare the presented NNs concerning achieved bit error ratio performance and computational complexity, we show the peculiar distributions of their data estimates, and we also point out their downsides compared to model-based equalizers." @default.
- W4309045046 created "2022-11-21" @default.
- W4309045046 creator A5010808029 @default.
- W4309045046 creator A5015047710 @default.
- W4309045046 creator A5031935371 @default.
- W4309045046 creator A5049116697 @default.
- W4309045046 date "2022-11-11" @default.
- W4309045046 modified "2023-09-30" @default.
- W4309045046 title "Neural Network Approaches for Data Estimation in Unique Word OFDM Systems" @default.
- W4309045046 doi "https://doi.org/10.48550/arxiv.2211.06054" @default.
- W4309045046 hasPublicationYear "2022" @default.
- W4309045046 type Work @default.
- W4309045046 citedByCount "0" @default.
- W4309045046 crossrefType "posted-content" @default.
- W4309045046 hasAuthorship W4309045046A5010808029 @default.
- W4309045046 hasAuthorship W4309045046A5015047710 @default.
- W4309045046 hasAuthorship W4309045046A5031935371 @default.
- W4309045046 hasAuthorship W4309045046A5049116697 @default.
- W4309045046 hasBestOaLocation W43090450461 @default.
- W4309045046 hasConcept C101765175 @default.
- W4309045046 hasConcept C105795698 @default.
- W4309045046 hasConcept C119857082 @default.
- W4309045046 hasConcept C124101348 @default.
- W4309045046 hasConcept C127162648 @default.
- W4309045046 hasConcept C154945302 @default.
- W4309045046 hasConcept C162324750 @default.
- W4309045046 hasConcept C185429906 @default.
- W4309045046 hasConcept C187736073 @default.
- W4309045046 hasConcept C207987634 @default.
- W4309045046 hasConcept C2524010 @default.
- W4309045046 hasConcept C33923547 @default.
- W4309045046 hasConcept C40409654 @default.
- W4309045046 hasConcept C41008148 @default.
- W4309045046 hasConcept C50644808 @default.
- W4309045046 hasConcept C67186912 @default.
- W4309045046 hasConcept C76155785 @default.
- W4309045046 hasConcept C77088390 @default.
- W4309045046 hasConcept C90805587 @default.
- W4309045046 hasConcept C96250715 @default.
- W4309045046 hasConceptScore W4309045046C101765175 @default.
- W4309045046 hasConceptScore W4309045046C105795698 @default.
- W4309045046 hasConceptScore W4309045046C119857082 @default.
- W4309045046 hasConceptScore W4309045046C124101348 @default.
- W4309045046 hasConceptScore W4309045046C127162648 @default.
- W4309045046 hasConceptScore W4309045046C154945302 @default.
- W4309045046 hasConceptScore W4309045046C162324750 @default.
- W4309045046 hasConceptScore W4309045046C185429906 @default.
- W4309045046 hasConceptScore W4309045046C187736073 @default.
- W4309045046 hasConceptScore W4309045046C207987634 @default.
- W4309045046 hasConceptScore W4309045046C2524010 @default.
- W4309045046 hasConceptScore W4309045046C33923547 @default.
- W4309045046 hasConceptScore W4309045046C40409654 @default.
- W4309045046 hasConceptScore W4309045046C41008148 @default.
- W4309045046 hasConceptScore W4309045046C50644808 @default.
- W4309045046 hasConceptScore W4309045046C67186912 @default.
- W4309045046 hasConceptScore W4309045046C76155785 @default.
- W4309045046 hasConceptScore W4309045046C77088390 @default.
- W4309045046 hasConceptScore W4309045046C90805587 @default.
- W4309045046 hasConceptScore W4309045046C96250715 @default.
- W4309045046 hasLocation W43090450461 @default.
- W4309045046 hasLocation W43090450462 @default.
- W4309045046 hasOpenAccess W4309045046 @default.
- W4309045046 hasPrimaryLocation W43090450461 @default.
- W4309045046 hasRelatedWork W1989642595 @default.
- W4309045046 hasRelatedWork W2010819611 @default.
- W4309045046 hasRelatedWork W2097742498 @default.
- W4309045046 hasRelatedWork W2102394268 @default.
- W4309045046 hasRelatedWork W2120193987 @default.
- W4309045046 hasRelatedWork W2516267189 @default.
- W4309045046 hasRelatedWork W2539926065 @default.
- W4309045046 hasRelatedWork W2572940275 @default.
- W4309045046 hasRelatedWork W4316829721 @default.
- W4309045046 hasRelatedWork W4383343412 @default.
- W4309045046 isParatext "false" @default.
- W4309045046 isRetracted "false" @default.
- W4309045046 workType "article" @default.