Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309046930> ?p ?o ?g. }
- W4309046930 endingPage "103385" @default.
- W4309046930 startingPage "103385" @default.
- W4309046930 abstract "This paper develops a reliability assessment method for dynamic systems subjected to a general random process excitation. Safety assessment using direct Monte Carlo simulation is computationally expensive, particularly when estimating low probabilities of failure. The Girsanov transformation-based reliability assessment method is a computationally efficient approach intended for dynamic systems driven by Gaussian white noise, and this approach can be extended to random process inputs that can be represented as transformations of Gaussian white noise. In practice, dynamic systems may be subjected to inputs that may be better modeled as non-Gaussian and/or non-stationary random processes, which are not easily transformable to Gaussian white noise. We propose a computationally efficient scheme, based on importance sampling, which can be implemented directly on a general class of random processes — both Gaussian and non-Gaussian, and stationary and non-stationary. We demonstrate that this approach is in fact equivalent to Girsanov transformation when the uncertain inputs are Gaussian white noise processes. The proposed approach is demonstrated on a linear dynamic system driven by Gaussian white noise and Brownian bridge processes, a multi-physics aero-thermo-elastic model of a flexible panel subjected to hypersonic flow, and a nonlinear building frame subjected to non-stationary non-Gaussian random process excitation." @default.
- W4309046930 created "2022-11-21" @default.
- W4309046930 creator A5072393639 @default.
- W4309046930 creator A5089894989 @default.
- W4309046930 date "2023-01-01" @default.
- W4309046930 modified "2023-09-27" @default.
- W4309046930 title "Importance sampling for reliability assessment of dynamic systems under general random process excitation" @default.
- W4309046930 cites W1572480955 @default.
- W4309046930 cites W1965555277 @default.
- W4309046930 cites W1980615384 @default.
- W4309046930 cites W1986551567 @default.
- W4309046930 cites W1989648449 @default.
- W4309046930 cites W1990956680 @default.
- W4309046930 cites W1992479597 @default.
- W4309046930 cites W1994140304 @default.
- W4309046930 cites W1999091229 @default.
- W4309046930 cites W2015572307 @default.
- W4309046930 cites W2022335938 @default.
- W4309046930 cites W2024364288 @default.
- W4309046930 cites W2030940121 @default.
- W4309046930 cites W2044667304 @default.
- W4309046930 cites W2050303634 @default.
- W4309046930 cites W2051159254 @default.
- W4309046930 cites W2052636399 @default.
- W4309046930 cites W2059070214 @default.
- W4309046930 cites W2060235242 @default.
- W4309046930 cites W2061647483 @default.
- W4309046930 cites W2067829701 @default.
- W4309046930 cites W2075892007 @default.
- W4309046930 cites W2078765362 @default.
- W4309046930 cites W2080240494 @default.
- W4309046930 cites W2081849916 @default.
- W4309046930 cites W2086740522 @default.
- W4309046930 cites W2154339823 @default.
- W4309046930 cites W2156716810 @default.
- W4309046930 cites W2744767905 @default.
- W4309046930 cites W2766044833 @default.
- W4309046930 cites W2775845628 @default.
- W4309046930 cites W2898758873 @default.
- W4309046930 cites W2964188185 @default.
- W4309046930 cites W2974445772 @default.
- W4309046930 cites W3174315079 @default.
- W4309046930 cites W4376596120 @default.
- W4309046930 cites W3151321365 @default.
- W4309046930 doi "https://doi.org/10.1016/j.probengmech.2022.103385" @default.
- W4309046930 hasPublicationYear "2023" @default.
- W4309046930 type Work @default.
- W4309046930 citedByCount "0" @default.
- W4309046930 crossrefType "journal-article" @default.
- W4309046930 hasAuthorship W4309046930A5072393639 @default.
- W4309046930 hasAuthorship W4309046930A5089894989 @default.
- W4309046930 hasConcept C104317684 @default.
- W4309046930 hasConcept C104824951 @default.
- W4309046930 hasConcept C105795698 @default.
- W4309046930 hasConcept C112633086 @default.
- W4309046930 hasConcept C11413529 @default.
- W4309046930 hasConcept C115961682 @default.
- W4309046930 hasConcept C121332964 @default.
- W4309046930 hasConcept C121864883 @default.
- W4309046930 hasConcept C130076159 @default.
- W4309046930 hasConcept C154945302 @default.
- W4309046930 hasConcept C163716315 @default.
- W4309046930 hasConcept C169334058 @default.
- W4309046930 hasConcept C185592680 @default.
- W4309046930 hasConcept C19499675 @default.
- W4309046930 hasConcept C198394728 @default.
- W4309046930 hasConcept C204241405 @default.
- W4309046930 hasConcept C2775924081 @default.
- W4309046930 hasConcept C28826006 @default.
- W4309046930 hasConcept C33923547 @default.
- W4309046930 hasConcept C41008148 @default.
- W4309046930 hasConcept C4199805 @default.
- W4309046930 hasConcept C47446073 @default.
- W4309046930 hasConcept C51267290 @default.
- W4309046930 hasConcept C51955184 @default.
- W4309046930 hasConcept C55493867 @default.
- W4309046930 hasConcept C61326573 @default.
- W4309046930 hasConcept C62520636 @default.
- W4309046930 hasConcept C8272713 @default.
- W4309046930 hasConcept C99498987 @default.
- W4309046930 hasConceptScore W4309046930C104317684 @default.
- W4309046930 hasConceptScore W4309046930C104824951 @default.
- W4309046930 hasConceptScore W4309046930C105795698 @default.
- W4309046930 hasConceptScore W4309046930C112633086 @default.
- W4309046930 hasConceptScore W4309046930C11413529 @default.
- W4309046930 hasConceptScore W4309046930C115961682 @default.
- W4309046930 hasConceptScore W4309046930C121332964 @default.
- W4309046930 hasConceptScore W4309046930C121864883 @default.
- W4309046930 hasConceptScore W4309046930C130076159 @default.
- W4309046930 hasConceptScore W4309046930C154945302 @default.
- W4309046930 hasConceptScore W4309046930C163716315 @default.
- W4309046930 hasConceptScore W4309046930C169334058 @default.
- W4309046930 hasConceptScore W4309046930C185592680 @default.
- W4309046930 hasConceptScore W4309046930C19499675 @default.
- W4309046930 hasConceptScore W4309046930C198394728 @default.
- W4309046930 hasConceptScore W4309046930C204241405 @default.
- W4309046930 hasConceptScore W4309046930C2775924081 @default.
- W4309046930 hasConceptScore W4309046930C28826006 @default.