Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309046931> ?p ?o ?g. }
- W4309046931 abstract "This study developed a data-driven model for the prediction of fluid–particle dynamics by coupling a flow surrogate model based on the deep convolutional neural network (CNN) and a Lagrangian particle tracking model based on the discrete phase model. The applicability of the model for the prediction of the single-fiber filtration efficiency (SFFE) for elliptical- and trilobal-shaped fibers was investigated. The ground-truth training data for the CNN flow surrogate model were obtained from a validated computational fluid dynamics (CFD) model for laminar incompressible flow. Details of fluid–particle dynamics parameters, including fluid and particle velocity vectors and contribution of Brownian and hydrodynamic forces, were examined to qualitatively and quantitatively evaluate the developed data-driven model. The CNN model with the U-net architecture provided highly accurate per-pixel predictions of velocity vectors and static pressure around the fibers with a speedup of more than three orders of magnitude compared with CFD simulations. Although SFFE was accurately predicted by the data-driven model, the uncertainties in the velocity predictions by the CNN flow surrogate model in low-velocity regions near the fibers resulted in deviations in the particle dynamics predictions. These flow uncertainties contributed to the random motion of particles due to Brownian diffusion and increased the probability of particles being captured by the fiber. The findings provide guidelines for the development of data science-based models for multiphysics fluid mechanics problems encountered in fibrous systems." @default.
- W4309046931 created "2022-11-21" @default.
- W4309046931 creator A5003893516 @default.
- W4309046931 creator A5023086490 @default.
- W4309046931 creator A5024888646 @default.
- W4309046931 creator A5064195139 @default.
- W4309046931 date "2022-12-01" @default.
- W4309046931 modified "2023-10-14" @default.
- W4309046931 title "Prediction of submicron particle dynamics in fibrous filter using deep convolutional neural networks" @default.
- W4309046931 cites W1975769472 @default.
- W4309046931 cites W1989362565 @default.
- W4309046931 cites W1994718918 @default.
- W4309046931 cites W1998782031 @default.
- W4309046931 cites W2019835810 @default.
- W4309046931 cites W2026318975 @default.
- W4309046931 cites W2032510674 @default.
- W4309046931 cites W2053934160 @default.
- W4309046931 cites W2064161966 @default.
- W4309046931 cites W2070479676 @default.
- W4309046931 cites W2075717025 @default.
- W4309046931 cites W2086509552 @default.
- W4309046931 cites W2098233760 @default.
- W4309046931 cites W2100256027 @default.
- W4309046931 cites W2104612958 @default.
- W4309046931 cites W2113472645 @default.
- W4309046931 cites W2122725800 @default.
- W4309046931 cites W2155616731 @default.
- W4309046931 cites W2170831028 @default.
- W4309046931 cites W2191832759 @default.
- W4309046931 cites W2266943615 @default.
- W4309046931 cites W2331082734 @default.
- W4309046931 cites W2535235865 @default.
- W4309046931 cites W2590727447 @default.
- W4309046931 cites W2788518094 @default.
- W4309046931 cites W2793939976 @default.
- W4309046931 cites W2810456734 @default.
- W4309046931 cites W2901064759 @default.
- W4309046931 cites W2911174322 @default.
- W4309046931 cites W2938819165 @default.
- W4309046931 cites W2972800496 @default.
- W4309046931 cites W2980585101 @default.
- W4309046931 cites W2981007488 @default.
- W4309046931 cites W3005641041 @default.
- W4309046931 cites W3019796550 @default.
- W4309046931 cites W3040064613 @default.
- W4309046931 cites W3042633722 @default.
- W4309046931 cites W3088331966 @default.
- W4309046931 cites W3102140816 @default.
- W4309046931 cites W3114268423 @default.
- W4309046931 cites W3135667998 @default.
- W4309046931 cites W3135692122 @default.
- W4309046931 cites W3160609196 @default.
- W4309046931 cites W3176028361 @default.
- W4309046931 cites W3178585195 @default.
- W4309046931 cites W3180987326 @default.
- W4309046931 cites W3187224820 @default.
- W4309046931 cites W3195875324 @default.
- W4309046931 cites W3203783753 @default.
- W4309046931 cites W3208389782 @default.
- W4309046931 cites W3213169128 @default.
- W4309046931 cites W3216195414 @default.
- W4309046931 cites W4200292487 @default.
- W4309046931 cites W4205924843 @default.
- W4309046931 cites W4210691109 @default.
- W4309046931 cites W4220688097 @default.
- W4309046931 cites W4220974482 @default.
- W4309046931 cites W4224879133 @default.
- W4309046931 cites W4280508996 @default.
- W4309046931 cites W4281866483 @default.
- W4309046931 cites W4282941393 @default.
- W4309046931 cites W4284685190 @default.
- W4309046931 cites W4286009331 @default.
- W4309046931 cites W4293339401 @default.
- W4309046931 cites W4295680961 @default.
- W4309046931 doi "https://doi.org/10.1063/5.0127325" @default.
- W4309046931 hasPublicationYear "2022" @default.
- W4309046931 type Work @default.
- W4309046931 citedByCount "1" @default.
- W4309046931 countsByYear W43090469312023 @default.
- W4309046931 crossrefType "journal-article" @default.
- W4309046931 hasAuthorship W4309046931A5003893516 @default.
- W4309046931 hasAuthorship W4309046931A5023086490 @default.
- W4309046931 hasAuthorship W4309046931A5024888646 @default.
- W4309046931 hasAuthorship W4309046931A5064195139 @default.
- W4309046931 hasConcept C111919701 @default.
- W4309046931 hasConcept C112401455 @default.
- W4309046931 hasConcept C119857082 @default.
- W4309046931 hasConcept C121332964 @default.
- W4309046931 hasConcept C121864883 @default.
- W4309046931 hasConcept C131675550 @default.
- W4309046931 hasConcept C135628077 @default.
- W4309046931 hasConcept C154945302 @default.
- W4309046931 hasConcept C1633027 @default.
- W4309046931 hasConcept C166693061 @default.
- W4309046931 hasConcept C38349280 @default.
- W4309046931 hasConcept C41008148 @default.
- W4309046931 hasConcept C43133876 @default.
- W4309046931 hasConcept C46435376 @default.
- W4309046931 hasConcept C57879066 @default.
- W4309046931 hasConcept C62520636 @default.