Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309046940> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4309046940 endingPage "110096" @default.
- W4309046940 startingPage "110096" @default.
- W4309046940 abstract "In spatial crowdsourcing, both workers and tasks are added to the system on the fly, making it a real-time platform with complex circumstances. Most research has focused on optimizing the total number of assigned tasks, with little attention paid to factors such as worker preferences and task completion rate in a practical environment. To capture the complex spatiotemporal correlation and the latent supply–demand relationship, this work proposes a convolutional spatiotemporal attention model (Conv-STAN) and a cluster-based time-weighted voting method (CT-Voting) for predicting the future distribution of crowdsourcing entities. We develop a crowdsourcing knowledge graph (CKG) that reflects the semantic linkages between entities and provide an innovative and effective state representation approach (CKG2vec) for quantifying the preference to demonstrate the impact of a dynamically changing environment on worker preferences. In addition, a local subgraph incremental updating approach (LSG-IncrUpdate) is constructed to simulate the interaction between various entities in a crowdsourcing setup. Finally, we introduce a reinforcement learning framework (CKG-RLTA) that integrates prediction and the crowdsourcing knowledge graph to conduct task assignment. The experimental findings show that our approach is sensitive to workers’ preferences and improves task completion rate, even when those preferences are subject to change." @default.
- W4309046940 created "2022-11-21" @default.
- W4309046940 creator A5043839950 @default.
- W4309046940 creator A5048315460 @default.
- W4309046940 date "2023-01-01" @default.
- W4309046940 modified "2023-10-18" @default.
- W4309046940 title "An optimized task assignment framework based on crowdsourcing knowledge graph and prediction" @default.
- W4309046940 cites W2012668444 @default.
- W4309046940 cites W2059618043 @default.
- W4309046940 cites W2077524676 @default.
- W4309046940 cites W2410545331 @default.
- W4309046940 cites W2888948932 @default.
- W4309046940 cites W2904792423 @default.
- W4309046940 cites W2952758634 @default.
- W4309046940 cites W2983806390 @default.
- W4309046940 cites W2997848713 @default.
- W4309046940 cites W2998908279 @default.
- W4309046940 cites W3208716704 @default.
- W4309046940 doi "https://doi.org/10.1016/j.knosys.2022.110096" @default.
- W4309046940 hasPublicationYear "2023" @default.
- W4309046940 type Work @default.
- W4309046940 citedByCount "2" @default.
- W4309046940 countsByYear W43090469402023 @default.
- W4309046940 crossrefType "journal-article" @default.
- W4309046940 hasAuthorship W4309046940A5043839950 @default.
- W4309046940 hasAuthorship W4309046940A5048315460 @default.
- W4309046940 hasConcept C119857082 @default.
- W4309046940 hasConcept C132525143 @default.
- W4309046940 hasConcept C136764020 @default.
- W4309046940 hasConcept C153668964 @default.
- W4309046940 hasConcept C154945302 @default.
- W4309046940 hasConcept C162324750 @default.
- W4309046940 hasConcept C17744445 @default.
- W4309046940 hasConcept C187736073 @default.
- W4309046940 hasConcept C199539241 @default.
- W4309046940 hasConcept C2776359362 @default.
- W4309046940 hasConcept C2780451532 @default.
- W4309046940 hasConcept C41008148 @default.
- W4309046940 hasConcept C520049643 @default.
- W4309046940 hasConcept C62230096 @default.
- W4309046940 hasConcept C80444323 @default.
- W4309046940 hasConcept C94625758 @default.
- W4309046940 hasConceptScore W4309046940C119857082 @default.
- W4309046940 hasConceptScore W4309046940C132525143 @default.
- W4309046940 hasConceptScore W4309046940C136764020 @default.
- W4309046940 hasConceptScore W4309046940C153668964 @default.
- W4309046940 hasConceptScore W4309046940C154945302 @default.
- W4309046940 hasConceptScore W4309046940C162324750 @default.
- W4309046940 hasConceptScore W4309046940C17744445 @default.
- W4309046940 hasConceptScore W4309046940C187736073 @default.
- W4309046940 hasConceptScore W4309046940C199539241 @default.
- W4309046940 hasConceptScore W4309046940C2776359362 @default.
- W4309046940 hasConceptScore W4309046940C2780451532 @default.
- W4309046940 hasConceptScore W4309046940C41008148 @default.
- W4309046940 hasConceptScore W4309046940C520049643 @default.
- W4309046940 hasConceptScore W4309046940C62230096 @default.
- W4309046940 hasConceptScore W4309046940C80444323 @default.
- W4309046940 hasConceptScore W4309046940C94625758 @default.
- W4309046940 hasFunder F4320335777 @default.
- W4309046940 hasLocation W43090469401 @default.
- W4309046940 hasOpenAccess W4309046940 @default.
- W4309046940 hasPrimaryLocation W43090469401 @default.
- W4309046940 hasRelatedWork W1570705485 @default.
- W4309046940 hasRelatedWork W2109094787 @default.
- W4309046940 hasRelatedWork W2338585973 @default.
- W4309046940 hasRelatedWork W3120199763 @default.
- W4309046940 hasRelatedWork W3128226684 @default.
- W4309046940 hasRelatedWork W3214187913 @default.
- W4309046940 hasRelatedWork W4226500680 @default.
- W4309046940 hasRelatedWork W4293870914 @default.
- W4309046940 hasRelatedWork W4298145885 @default.
- W4309046940 hasRelatedWork W4308177422 @default.
- W4309046940 hasVolume "260" @default.
- W4309046940 isParatext "false" @default.
- W4309046940 isRetracted "false" @default.
- W4309046940 workType "article" @default.