Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309047300> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4309047300 endingPage "109153" @default.
- W4309047300 startingPage "109153" @default.
- W4309047300 abstract "Image compositions are helpful in the study of image structures and assist in discovering the semantics of the underlying scene portrayed across art forms and styles. With the digitization of artworks in recent years, thousands of images of a particular scene or narrative could potentially be linked together. However, manually linking this data with consistent objectiveness can be a highly challenging and time-consuming task. In this work, we present a novel approach called Image Composition Canvas (ICC++) to compare and retrieve images having similar compositional elements. ICC++ is an improvement over ICC, specializing in generating low and high-level features (compositional elements) motivated by Max Imdahl’s work. To this end, we present a rigorous quantitative and qualitative comparison of our approach with traditional and state-of-the-art (SOTA) methods showing that our proposed method outperforms all of them. In combination with deep features, our method outperforms the best deep learning-based method, opening the research direction for explainable machine learning for digital humanities. We will release the code and the data post-publication." @default.
- W4309047300 created "2022-11-21" @default.
- W4309047300 creator A5001765180 @default.
- W4309047300 creator A5002765556 @default.
- W4309047300 creator A5007968883 @default.
- W4309047300 creator A5020211325 @default.
- W4309047300 creator A5045980655 @default.
- W4309047300 creator A5061227171 @default.
- W4309047300 creator A5087093169 @default.
- W4309047300 date "2023-04-01" @default.
- W4309047300 modified "2023-09-27" @default.
- W4309047300 title "ICC++: Explainable feature learning for art history using image compositions" @default.
- W4309047300 cites W2019085623 @default.
- W4309047300 cites W2070244236 @default.
- W4309047300 cites W2151103935 @default.
- W4309047300 cites W2156423697 @default.
- W4309047300 cites W2253323104 @default.
- W4309047300 cites W2253709148 @default.
- W4309047300 cites W2732026016 @default.
- W4309047300 cites W2795540509 @default.
- W4309047300 cites W2963588253 @default.
- W4309047300 cites W2994974226 @default.
- W4309047300 cites W3127499951 @default.
- W4309047300 cites W4288045821 @default.
- W4309047300 doi "https://doi.org/10.1016/j.patcog.2022.109153" @default.
- W4309047300 hasPublicationYear "2023" @default.
- W4309047300 type Work @default.
- W4309047300 citedByCount "0" @default.
- W4309047300 crossrefType "journal-article" @default.
- W4309047300 hasAuthorship W4309047300A5001765180 @default.
- W4309047300 hasAuthorship W4309047300A5002765556 @default.
- W4309047300 hasAuthorship W4309047300A5007968883 @default.
- W4309047300 hasAuthorship W4309047300A5020211325 @default.
- W4309047300 hasAuthorship W4309047300A5045980655 @default.
- W4309047300 hasAuthorship W4309047300A5061227171 @default.
- W4309047300 hasAuthorship W4309047300A5087093169 @default.
- W4309047300 hasConcept C108583219 @default.
- W4309047300 hasConcept C115961682 @default.
- W4309047300 hasConcept C124952713 @default.
- W4309047300 hasConcept C138885662 @default.
- W4309047300 hasConcept C142362112 @default.
- W4309047300 hasConcept C153180895 @default.
- W4309047300 hasConcept C154945302 @default.
- W4309047300 hasConcept C162324750 @default.
- W4309047300 hasConcept C184337299 @default.
- W4309047300 hasConcept C187736073 @default.
- W4309047300 hasConcept C199360897 @default.
- W4309047300 hasConcept C2776401178 @default.
- W4309047300 hasConcept C2779308522 @default.
- W4309047300 hasConcept C2780451532 @default.
- W4309047300 hasConcept C31972630 @default.
- W4309047300 hasConcept C40231798 @default.
- W4309047300 hasConcept C41008148 @default.
- W4309047300 hasConcept C41895202 @default.
- W4309047300 hasConceptScore W4309047300C108583219 @default.
- W4309047300 hasConceptScore W4309047300C115961682 @default.
- W4309047300 hasConceptScore W4309047300C124952713 @default.
- W4309047300 hasConceptScore W4309047300C138885662 @default.
- W4309047300 hasConceptScore W4309047300C142362112 @default.
- W4309047300 hasConceptScore W4309047300C153180895 @default.
- W4309047300 hasConceptScore W4309047300C154945302 @default.
- W4309047300 hasConceptScore W4309047300C162324750 @default.
- W4309047300 hasConceptScore W4309047300C184337299 @default.
- W4309047300 hasConceptScore W4309047300C187736073 @default.
- W4309047300 hasConceptScore W4309047300C199360897 @default.
- W4309047300 hasConceptScore W4309047300C2776401178 @default.
- W4309047300 hasConceptScore W4309047300C2779308522 @default.
- W4309047300 hasConceptScore W4309047300C2780451532 @default.
- W4309047300 hasConceptScore W4309047300C31972630 @default.
- W4309047300 hasConceptScore W4309047300C40231798 @default.
- W4309047300 hasConceptScore W4309047300C41008148 @default.
- W4309047300 hasConceptScore W4309047300C41895202 @default.
- W4309047300 hasLocation W43090473001 @default.
- W4309047300 hasOpenAccess W4309047300 @default.
- W4309047300 hasPrimaryLocation W43090473001 @default.
- W4309047300 hasRelatedWork W2382607599 @default.
- W4309047300 hasRelatedWork W2546942002 @default.
- W4309047300 hasRelatedWork W2731899572 @default.
- W4309047300 hasRelatedWork W2738221750 @default.
- W4309047300 hasRelatedWork W2939353110 @default.
- W4309047300 hasRelatedWork W2970216048 @default.
- W4309047300 hasRelatedWork W2978289231 @default.
- W4309047300 hasRelatedWork W3009238340 @default.
- W4309047300 hasRelatedWork W3012401223 @default.
- W4309047300 hasRelatedWork W3215138031 @default.
- W4309047300 hasVolume "136" @default.
- W4309047300 isParatext "false" @default.
- W4309047300 isRetracted "false" @default.
- W4309047300 workType "article" @default.