Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309047395> ?p ?o ?g. }
- W4309047395 endingPage "206" @default.
- W4309047395 startingPage "196" @default.
- W4309047395 abstract "ObjectiveTo identify specific germline mutations related to sperm reproductive competence, in couples with unexplained infertility.DesignIn this retrospective study, couples were divided according to whether they had successful intracytoplasmic sperm injection outcomes (fertile) or not (infertile). Ancillary sperm function tests were performed on ejaculates, and whole exome sequencing was performed on spermatozoal DNA. Sperm aneuploidy and gene mutation profiles were compared between the 2 cohorts as well as according to the specific reasons for reproductive failure.SettingCenter for reproductive medicine at a major academic medical center.Patient(s)Thirty-one couples with negative infertility workups and normal semen parameters.Intervention(s)Couples with mutations on fertilization- or embryo development-related genes were subsequently treated by assisted gamete treatment or microfluidics, respectively.Main Outcome Measure(s)Intracytoplasmic sperm injection cycle outcomes including fertilization, clinical pregnancy, and delivery rates.Result(s)Sperm aneuploidy was lower in the fertile group (4.0% vs. 8.4%). Spermatozoa from both cohorts displayed mutations associated with sperm–egg fusion (ADAM3A) and acrosomal development (SPACA1), regardless of reproductive outcome. The infertile cohort was then categorized according to the reasons for reproductive failure: absent fertilization, poor early embryo development, implantation failure, or pregnancy loss.Spermatozoa from the fertilization failure subgroup (n = 4) had negligible PLCζ presence (10% ± 9%) and gene mutations (PLCZ1, PIWIL1, ADAM15) indicating a sperm-related oocyte-activating deficiency. These couples were successfully treated by assisted gamete treatment in their subsequent cycles.Spermatozoa from the poor early embryo development subgroup (n = 5) had abnormal centrosomes (45.9% ± 5%), and displayed mutations impacting centrosome integrity (HAUS1) and spindle/microtubular stabilization (KIF4A, XRN1). Microfluidic sperm processing subsequently yielded a term pregnancy.Spermatozoa from the implantation failure subgroup (n = 7) also had abnormal centrosomes (53.1% ± 13%) and carried mutations affecting embryonic implantation (IL9R) and microtubule and centrosomal integrity (MAP1S, SUPT5H, PLK4), whereas those from the pregnancy loss subgroup (n = 5) displayed mutations on genes involved in trophoblast development (NLRP7), cell cycle regulation (MARK4, TRIP13, DAB2IP, KIF1C), and recurrent miscarriage (TP53).Conclusion(s)By assessing the sperm genome, we identified specific germline mutations related to various reproductive processes. This information may clarify elusive factors underlying reproductive competence and enhance treatment for couples with unexplained infertility. To identify specific germline mutations related to sperm reproductive competence, in couples with unexplained infertility. In this retrospective study, couples were divided according to whether they had successful intracytoplasmic sperm injection outcomes (fertile) or not (infertile). Ancillary sperm function tests were performed on ejaculates, and whole exome sequencing was performed on spermatozoal DNA. Sperm aneuploidy and gene mutation profiles were compared between the 2 cohorts as well as according to the specific reasons for reproductive failure. Center for reproductive medicine at a major academic medical center. Thirty-one couples with negative infertility workups and normal semen parameters. Couples with mutations on fertilization- or embryo development-related genes were subsequently treated by assisted gamete treatment or microfluidics, respectively. Intracytoplasmic sperm injection cycle outcomes including fertilization, clinical pregnancy, and delivery rates. Sperm aneuploidy was lower in the fertile group (4.0% vs. 8.4%). Spermatozoa from both cohorts displayed mutations associated with sperm–egg fusion (ADAM3A) and acrosomal development (SPACA1), regardless of reproductive outcome. The infertile cohort was then categorized according to the reasons for reproductive failure: absent fertilization, poor early embryo development, implantation failure, or pregnancy loss. Spermatozoa from the fertilization failure subgroup (n = 4) had negligible PLCζ presence (10% ± 9%) and gene mutations (PLCZ1, PIWIL1, ADAM15) indicating a sperm-related oocyte-activating deficiency. These couples were successfully treated by assisted gamete treatment in their subsequent cycles. Spermatozoa from the poor early embryo development subgroup (n = 5) had abnormal centrosomes (45.9% ± 5%), and displayed mutations impacting centrosome integrity (HAUS1) and spindle/microtubular stabilization (KIF4A, XRN1). Microfluidic sperm processing subsequently yielded a term pregnancy. Spermatozoa from the implantation failure subgroup (n = 7) also had abnormal centrosomes (53.1% ± 13%) and carried mutations affecting embryonic implantation (IL9R) and microtubule and centrosomal integrity (MAP1S, SUPT5H, PLK4), whereas those from the pregnancy loss subgroup (n = 5) displayed mutations on genes involved in trophoblast development (NLRP7), cell cycle regulation (MARK4, TRIP13, DAB2IP, KIF1C), and recurrent miscarriage (TP53). By assessing the sperm genome, we identified specific germline mutations related to various reproductive processes. This information may clarify elusive factors underlying reproductive competence and enhance treatment for couples with unexplained infertility." @default.
- W4309047395 created "2022-11-21" @default.
- W4309047395 creator A5003115717 @default.
- W4309047395 creator A5036543946 @default.
- W4309047395 creator A5052775929 @default.
- W4309047395 creator A5073077048 @default.
- W4309047395 date "2023-02-01" @default.
- W4309047395 modified "2023-09-30" @default.
- W4309047395 title "Profiling the male germline genome to unravel its reproductive potential" @default.
- W4309047395 cites W123899615 @default.
- W4309047395 cites W1716267160 @default.
- W4309047395 cites W1975587192 @default.
- W4309047395 cites W1989520345 @default.
- W4309047395 cites W1999951054 @default.
- W4309047395 cites W2017411418 @default.
- W4309047395 cites W2018184314 @default.
- W4309047395 cites W2032663283 @default.
- W4309047395 cites W2036479466 @default.
- W4309047395 cites W2040083665 @default.
- W4309047395 cites W2046084949 @default.
- W4309047395 cites W2082757269 @default.
- W4309047395 cites W2086609784 @default.
- W4309047395 cites W2101152704 @default.
- W4309047395 cites W2113003004 @default.
- W4309047395 cites W2114853768 @default.
- W4309047395 cites W2142288654 @default.
- W4309047395 cites W2147474375 @default.
- W4309047395 cites W2158625518 @default.
- W4309047395 cites W2207817612 @default.
- W4309047395 cites W2395382802 @default.
- W4309047395 cites W2508153597 @default.
- W4309047395 cites W2540142173 @default.
- W4309047395 cites W2606033936 @default.
- W4309047395 cites W2607742704 @default.
- W4309047395 cites W2619102305 @default.
- W4309047395 cites W2752455371 @default.
- W4309047395 cites W2793322754 @default.
- W4309047395 cites W2805623642 @default.
- W4309047395 cites W2891940789 @default.
- W4309047395 cites W2907404714 @default.
- W4309047395 cites W2914893264 @default.
- W4309047395 cites W2946382119 @default.
- W4309047395 cites W2950402016 @default.
- W4309047395 cites W2951324027 @default.
- W4309047395 cites W2968290343 @default.
- W4309047395 cites W2969029982 @default.
- W4309047395 cites W2984940001 @default.
- W4309047395 cites W2989960370 @default.
- W4309047395 cites W3005688643 @default.
- W4309047395 cites W3033818528 @default.
- W4309047395 cites W3043492206 @default.
- W4309047395 cites W3044598579 @default.
- W4309047395 cites W3109208117 @default.
- W4309047395 cites W3110649553 @default.
- W4309047395 cites W3155300663 @default.
- W4309047395 cites W3184321658 @default.
- W4309047395 cites W3200101634 @default.
- W4309047395 cites W3203051694 @default.
- W4309047395 cites W3206939476 @default.
- W4309047395 cites W3213139927 @default.
- W4309047395 cites W4226088057 @default.
- W4309047395 cites W4233819793 @default.
- W4309047395 cites W948005676 @default.
- W4309047395 doi "https://doi.org/10.1016/j.fertnstert.2022.11.006" @default.
- W4309047395 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36379263" @default.
- W4309047395 hasPublicationYear "2023" @default.
- W4309047395 type Work @default.
- W4309047395 citedByCount "3" @default.
- W4309047395 countsByYear W43090473952023 @default.
- W4309047395 crossrefType "journal-article" @default.
- W4309047395 hasAuthorship W4309047395A5003115717 @default.
- W4309047395 hasAuthorship W4309047395A5036543946 @default.
- W4309047395 hasAuthorship W4309047395A5052775929 @default.
- W4309047395 hasAuthorship W4309047395A5073077048 @default.
- W4309047395 hasBestOaLocation W43090473951 @default.
- W4309047395 hasConcept C104317684 @default.
- W4309047395 hasConcept C16685009 @default.
- W4309047395 hasConcept C2777338322 @default.
- W4309047395 hasConcept C2777688143 @default.
- W4309047395 hasConcept C2778093475 @default.
- W4309047395 hasConcept C2778278907 @default.
- W4309047395 hasConcept C2778580812 @default.
- W4309047395 hasConcept C2779234561 @default.
- W4309047395 hasConcept C2779672484 @default.
- W4309047395 hasConcept C2781087480 @default.
- W4309047395 hasConcept C29456083 @default.
- W4309047395 hasConcept C30481170 @default.
- W4309047395 hasConcept C500014431 @default.
- W4309047395 hasConcept C54355233 @default.
- W4309047395 hasConcept C71924100 @default.
- W4309047395 hasConcept C86803240 @default.
- W4309047395 hasConcept C88972607 @default.
- W4309047395 hasConceptScore W4309047395C104317684 @default.
- W4309047395 hasConceptScore W4309047395C16685009 @default.
- W4309047395 hasConceptScore W4309047395C2777338322 @default.
- W4309047395 hasConceptScore W4309047395C2777688143 @default.
- W4309047395 hasConceptScore W4309047395C2778093475 @default.
- W4309047395 hasConceptScore W4309047395C2778278907 @default.