Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309074711> ?p ?o ?g. }
- W4309074711 endingPage "27" @default.
- W4309074711 startingPage "1" @default.
- W4309074711 abstract "AI-based machine learning and intelligent computing solvers are famous among scientists and researchers for their resilience, robustness, stability, and fast convergence. Artificial neural network (ANN) is one of the important and burgeoning fields in artificial intelligence. The work in hand exploits the strength of artificial back propagated neural networks with the Levenberg Marquardt algorithm (ABNN-LMA) to examine the entropy generation of the magnetohydrodynamic Darcy-Forchheimer nanofluid flow model (MHD-DFNM) over a stretched surface. Two types of nanoparticles, i.e Silicon dioxide (SiO2) and Molybdenum disulfide (MoS2), and continuous phase liquid, i.e propylene glycol, are considered. The PDEs of MHD-DFNM are transformed into coupled ODEs by appropriate (similarity) transformations. The reference dataset is obtained by the variation of influential parameters of MHD-DFNM from the Homotopy Analysis Method (HAM). The reference HAM data are executed in training/testing/validation sets to find and analyze the approximated solution of the designed ABNN-LMA and its comparison with the reference data solution. The better performance is consistently certified with mean squared error (MSE) curves, regression index, and error histogram study. The results reveal that an increase in values of porosity parameter declines the velocity profile for both SiO2 and MoS2 nanoparticles suspended in propylene glycol nanofluids. The thermal profile improves for both SiO2 − propylene glycol and MoS2 − propylene glycol nanofluids when the heat generation parameter increases." @default.
- W4309074711 created "2022-11-21" @default.
- W4309074711 creator A5003078331 @default.
- W4309074711 creator A5009127141 @default.
- W4309074711 creator A5028000466 @default.
- W4309074711 creator A5044383953 @default.
- W4309074711 creator A5080585392 @default.
- W4309074711 date "2022-11-12" @default.
- W4309074711 modified "2023-09-26" @default.
- W4309074711 title "Neuro-computing-based Levenberg Marquardt algorithm for entropy optimized Darcy-Forchheimer nanofluid with variable viscosity" @default.
- W4309074711 cites W1965313232 @default.
- W4309074711 cites W1995379804 @default.
- W4309074711 cites W2066479857 @default.
- W4309074711 cites W2316063056 @default.
- W4309074711 cites W2326453588 @default.
- W4309074711 cites W2790396594 @default.
- W4309074711 cites W2903449751 @default.
- W4309074711 cites W2913001593 @default.
- W4309074711 cites W2941594746 @default.
- W4309074711 cites W2943093231 @default.
- W4309074711 cites W2984365073 @default.
- W4309074711 cites W2990415463 @default.
- W4309074711 cites W2995735774 @default.
- W4309074711 cites W2998317432 @default.
- W4309074711 cites W3003256648 @default.
- W4309074711 cites W3016087817 @default.
- W4309074711 cites W3024948638 @default.
- W4309074711 cites W3025532262 @default.
- W4309074711 cites W3039129619 @default.
- W4309074711 cites W3039223527 @default.
- W4309074711 cites W3093175864 @default.
- W4309074711 cites W3095878596 @default.
- W4309074711 cites W3096589673 @default.
- W4309074711 cites W3108428950 @default.
- W4309074711 cites W3111382674 @default.
- W4309074711 cites W3112173448 @default.
- W4309074711 cites W3117783487 @default.
- W4309074711 cites W3121092089 @default.
- W4309074711 cites W3122738095 @default.
- W4309074711 cites W3127416175 @default.
- W4309074711 cites W3127489447 @default.
- W4309074711 cites W3134075239 @default.
- W4309074711 cites W3136372549 @default.
- W4309074711 cites W3138910330 @default.
- W4309074711 cites W3146459518 @default.
- W4309074711 cites W3148127488 @default.
- W4309074711 cites W3156447559 @default.
- W4309074711 cites W3156638390 @default.
- W4309074711 cites W3159178679 @default.
- W4309074711 cites W3164360232 @default.
- W4309074711 cites W3168207525 @default.
- W4309074711 cites W3209387939 @default.
- W4309074711 doi "https://doi.org/10.1080/17455030.2022.2131013" @default.
- W4309074711 hasPublicationYear "2022" @default.
- W4309074711 type Work @default.
- W4309074711 citedByCount "1" @default.
- W4309074711 countsByYear W43090747112023 @default.
- W4309074711 crossrefType "journal-article" @default.
- W4309074711 hasAuthorship W4309074711A5003078331 @default.
- W4309074711 hasAuthorship W4309074711A5009127141 @default.
- W4309074711 hasAuthorship W4309074711A5028000466 @default.
- W4309074711 hasAuthorship W4309074711A5044383953 @default.
- W4309074711 hasAuthorship W4309074711A5080585392 @default.
- W4309074711 hasConcept C105795698 @default.
- W4309074711 hasConcept C11413529 @default.
- W4309074711 hasConcept C121332964 @default.
- W4309074711 hasConcept C130230704 @default.
- W4309074711 hasConcept C139945424 @default.
- W4309074711 hasConcept C154945302 @default.
- W4309074711 hasConcept C155672457 @default.
- W4309074711 hasConcept C171250308 @default.
- W4309074711 hasConcept C182748727 @default.
- W4309074711 hasConcept C192562407 @default.
- W4309074711 hasConcept C196558001 @default.
- W4309074711 hasConcept C21946209 @default.
- W4309074711 hasConcept C33923547 @default.
- W4309074711 hasConcept C41008148 @default.
- W4309074711 hasConcept C47376073 @default.
- W4309074711 hasConcept C50644808 @default.
- W4309074711 hasConcept C87578567 @default.
- W4309074711 hasConcept C97355855 @default.
- W4309074711 hasConceptScore W4309074711C105795698 @default.
- W4309074711 hasConceptScore W4309074711C11413529 @default.
- W4309074711 hasConceptScore W4309074711C121332964 @default.
- W4309074711 hasConceptScore W4309074711C130230704 @default.
- W4309074711 hasConceptScore W4309074711C139945424 @default.
- W4309074711 hasConceptScore W4309074711C154945302 @default.
- W4309074711 hasConceptScore W4309074711C155672457 @default.
- W4309074711 hasConceptScore W4309074711C171250308 @default.
- W4309074711 hasConceptScore W4309074711C182748727 @default.
- W4309074711 hasConceptScore W4309074711C192562407 @default.
- W4309074711 hasConceptScore W4309074711C196558001 @default.
- W4309074711 hasConceptScore W4309074711C21946209 @default.
- W4309074711 hasConceptScore W4309074711C33923547 @default.
- W4309074711 hasConceptScore W4309074711C41008148 @default.
- W4309074711 hasConceptScore W4309074711C47376073 @default.
- W4309074711 hasConceptScore W4309074711C50644808 @default.
- W4309074711 hasConceptScore W4309074711C87578567 @default.