Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309078862> ?p ?o ?g. }
- W4309078862 endingPage "126691" @default.
- W4309078862 startingPage "126691" @default.
- W4309078862 abstract "The fungus Botrytis cinerea causes severe diseases in many crops. In grapevines, it causes Botrytis bunch rot (BBR), one of the most reported diseases worldwide. It affects all herbaceous organs of the vine, especially the ripe berries, causing significant reductions in yield and wine quality. Botrytis detection models traditionally focus on temporal analysis at a specific spatial location, ignoring the study of the spatial variability of the crop. Unmanned aerial vehicles (UAVs) equipped with multispectral cameras can provide high-resolution images that can be valuable information to develop a tool for aerial pest detection. This paper proposes an algorithm to assess the risk of Botrytis development in a vineyard in Spain, using as input products generated by UAV imagery: DTM (Digital Terrain Model), NDVI (Normalised Difference Vegetation Index), CHM (Canopy Height Model) and LAI (Leaf Area Index). They represent the height and architecture of the canopy, the topography and the plant status. Healthy vines were significantly different from vines affected by Botrytis (p < 0.05) in each of these variables, supporting the consistency of using these inputs for the model. This methodology combines photogrammetric, spatial analysis techniques, and machine learning classification methods with deep vineyard-related agronomic knowledge to produce heatmaps with acceptable accuracy (R² > 0.7) that may support vineyard managers in understanding the spatial variability of the disease, allowing the spatial 2D visualisation of the risk of BBR disease development and, potentially, resulting in higher operational efficiency and reducing phytosanitary treatments, as well as economic costs. Furthermore, the present work takes advantage of imaging technologies that provide information about any location in the field, not only about specific points in the vineyard, suggesting that UAV imagery is appropriate to measure the likelihood of BBR development within the vineyard, highlighting the importance of efficient disease management based on spatial variability." @default.
- W4309078862 created "2022-11-21" @default.
- W4309078862 creator A5032512018 @default.
- W4309078862 creator A5072872361 @default.
- W4309078862 creator A5086176346 @default.
- W4309078862 date "2023-01-01" @default.
- W4309078862 modified "2023-10-11" @default.
- W4309078862 title "Mapping the spatial variability of Botrytis bunch rot risk in vineyards using UAV multispectral imagery" @default.
- W4309078862 cites W1511208807 @default.
- W4309078862 cites W1711839986 @default.
- W4309078862 cites W1968388623 @default.
- W4309078862 cites W1987544336 @default.
- W4309078862 cites W1993182970 @default.
- W4309078862 cites W2003682334 @default.
- W4309078862 cites W2011873196 @default.
- W4309078862 cites W2013783787 @default.
- W4309078862 cites W2028007988 @default.
- W4309078862 cites W2028045291 @default.
- W4309078862 cites W2062982970 @default.
- W4309078862 cites W2084190704 @default.
- W4309078862 cites W2095142905 @default.
- W4309078862 cites W2110079015 @default.
- W4309078862 cites W2124775346 @default.
- W4309078862 cites W2176515247 @default.
- W4309078862 cites W2281627593 @default.
- W4309078862 cites W2290703228 @default.
- W4309078862 cites W2396098103 @default.
- W4309078862 cites W2502394744 @default.
- W4309078862 cites W2526972525 @default.
- W4309078862 cites W2528251675 @default.
- W4309078862 cites W2555545946 @default.
- W4309078862 cites W2597041087 @default.
- W4309078862 cites W2600037548 @default.
- W4309078862 cites W2618556522 @default.
- W4309078862 cites W2759474895 @default.
- W4309078862 cites W2787334870 @default.
- W4309078862 cites W2806544881 @default.
- W4309078862 cites W2809985736 @default.
- W4309078862 cites W2811294695 @default.
- W4309078862 cites W2919108525 @default.
- W4309078862 cites W2940504349 @default.
- W4309078862 cites W2942435091 @default.
- W4309078862 cites W2944785292 @default.
- W4309078862 cites W2976762801 @default.
- W4309078862 cites W2996348887 @default.
- W4309078862 cites W2999989454 @default.
- W4309078862 cites W3003104184 @default.
- W4309078862 cites W3005863531 @default.
- W4309078862 cites W3013580370 @default.
- W4309078862 cites W3021471752 @default.
- W4309078862 cites W3030357332 @default.
- W4309078862 cites W3109031550 @default.
- W4309078862 cites W3127263314 @default.
- W4309078862 cites W3135675808 @default.
- W4309078862 cites W3143537161 @default.
- W4309078862 cites W3159000790 @default.
- W4309078862 cites W3159702250 @default.
- W4309078862 cites W3163593447 @default.
- W4309078862 cites W3165535194 @default.
- W4309078862 cites W3185004595 @default.
- W4309078862 cites W4200536651 @default.
- W4309078862 cites W4210742178 @default.
- W4309078862 cites W4246919251 @default.
- W4309078862 cites W4250310729 @default.
- W4309078862 cites W4254668918 @default.
- W4309078862 cites W4312974188 @default.
- W4309078862 doi "https://doi.org/10.1016/j.eja.2022.126691" @default.
- W4309078862 hasPublicationYear "2023" @default.
- W4309078862 type Work @default.
- W4309078862 citedByCount "12" @default.
- W4309078862 countsByYear W43090788622023 @default.
- W4309078862 crossrefType "journal-article" @default.
- W4309078862 hasAuthorship W4309078862A5032512018 @default.
- W4309078862 hasAuthorship W4309078862A5072872361 @default.
- W4309078862 hasAuthorship W4309078862A5086176346 @default.
- W4309078862 hasBestOaLocation W43090788621 @default.
- W4309078862 hasConcept C101000010 @default.
- W4309078862 hasConcept C142724271 @default.
- W4309078862 hasConcept C144027150 @default.
- W4309078862 hasConcept C1549246 @default.
- W4309078862 hasConcept C173163844 @default.
- W4309078862 hasConcept C205649164 @default.
- W4309078862 hasConcept C25989453 @default.
- W4309078862 hasConcept C2775867217 @default.
- W4309078862 hasConcept C2776133958 @default.
- W4309078862 hasConcept C2776919067 @default.
- W4309078862 hasConcept C2780924976 @default.
- W4309078862 hasConcept C2781214258 @default.
- W4309078862 hasConcept C39432304 @default.
- W4309078862 hasConcept C58640448 @default.
- W4309078862 hasConcept C59822182 @default.
- W4309078862 hasConcept C62649853 @default.
- W4309078862 hasConcept C6557445 @default.
- W4309078862 hasConcept C71924100 @default.
- W4309078862 hasConcept C86803240 @default.
- W4309078862 hasConceptScore W4309078862C101000010 @default.
- W4309078862 hasConceptScore W4309078862C142724271 @default.
- W4309078862 hasConceptScore W4309078862C144027150 @default.