Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309078923> ?p ?o ?g. }
- W4309078923 endingPage "104391" @default.
- W4309078923 startingPage "104391" @default.
- W4309078923 abstract "Lung cancer, the deadliest disease worldwide, poses a massive threat to humankind. Various researchers have designed Computer-Aided-Diagnosis systems for the early-stage detection of lung cancer. However, patients are primarily diagnosed in advanced stages when treatment becomes complicated and dependent on multiple factors like size, nature, location of the tumor, and proper cancer staging. TNM (Tumor, Node, and Metastasis) staging provides all this information. This study aims to develop a novel and efficient approach to classify lung cancer stages based on TNM standards. We propose a multi-level 3D deep convolutional neural network, LCSCNet (Lung Cancer Stage Classification Network). The proposed network architecture consists of three similar classifier networks to classify three labels, T, N, and M-labels. First, we pre-process the data, in which the CT images are augmented, and the label files are processed to get the corresponding TNM labels. For the classification network, we implement a dense convolutional neural network with a concurrent squeeze & excitation module and asymmetric convolutions for classifying each label separately. The overall stage is determined by combining all three labels. The concurrent squeeze & excitation module helps the network focus on the essential information of the image, due to which the classification performance is enhanced. The asymmetric convolutions are introduced to reduce the computation complexity of the network. Two publicly available datasets are used for this study. We achieved average accuracies of 96.23% for T-Stage, 97.63% for N-Stage, and 96.92% for M-Stage classification. Furthermore, an overall stage classification accuracy of 97% is achieved." @default.
- W4309078923 created "2022-11-21" @default.
- W4309078923 creator A5083564224 @default.
- W4309078923 creator A5091593309 @default.
- W4309078923 date "2023-02-01" @default.
- W4309078923 modified "2023-09-30" @default.
- W4309078923 title "LCSCNet: A multi-level approach for lung cancer stage classification using 3D dense convolutional neural networks with concurrent squeeze-and-excitation module" @default.
- W4309078923 cites W1986649315 @default.
- W4309078923 cites W2040033900 @default.
- W4309078923 cites W2051434435 @default.
- W4309078923 cites W2112467442 @default.
- W4309078923 cites W2194775991 @default.
- W4309078923 cites W2535300095 @default.
- W4309078923 cites W2549139847 @default.
- W4309078923 cites W2584017349 @default.
- W4309078923 cites W2592929672 @default.
- W4309078923 cites W2752782242 @default.
- W4309078923 cites W2777186991 @default.
- W4309078923 cites W2781660331 @default.
- W4309078923 cites W2883723049 @default.
- W4309078923 cites W2897755679 @default.
- W4309078923 cites W2899393783 @default.
- W4309078923 cites W2908300827 @default.
- W4309078923 cites W2913961394 @default.
- W4309078923 cites W2922172225 @default.
- W4309078923 cites W2946341834 @default.
- W4309078923 cites W2955841676 @default.
- W4309078923 cites W2957352479 @default.
- W4309078923 cites W2963351448 @default.
- W4309078923 cites W2963446712 @default.
- W4309078923 cites W2992511782 @default.
- W4309078923 cites W3004966381 @default.
- W4309078923 cites W3007997946 @default.
- W4309078923 cites W3016836174 @default.
- W4309078923 cites W3016967415 @default.
- W4309078923 cites W3018761592 @default.
- W4309078923 cites W3026396140 @default.
- W4309078923 cites W3030790048 @default.
- W4309078923 cites W3042980549 @default.
- W4309078923 cites W3090140268 @default.
- W4309078923 cites W3093133154 @default.
- W4309078923 cites W3093682345 @default.
- W4309078923 cites W3096792162 @default.
- W4309078923 cites W3136692761 @default.
- W4309078923 cites W3147142721 @default.
- W4309078923 cites W3164581645 @default.
- W4309078923 cites W845365781 @default.
- W4309078923 doi "https://doi.org/10.1016/j.bspc.2022.104391" @default.
- W4309078923 hasPublicationYear "2023" @default.
- W4309078923 type Work @default.
- W4309078923 citedByCount "0" @default.
- W4309078923 crossrefType "journal-article" @default.
- W4309078923 hasAuthorship W4309078923A5083564224 @default.
- W4309078923 hasAuthorship W4309078923A5091593309 @default.
- W4309078923 hasConcept C121332964 @default.
- W4309078923 hasConcept C127313418 @default.
- W4309078923 hasConcept C142724271 @default.
- W4309078923 hasConcept C146357865 @default.
- W4309078923 hasConcept C151730666 @default.
- W4309078923 hasConcept C153180895 @default.
- W4309078923 hasConcept C154945302 @default.
- W4309078923 hasConcept C2776256026 @default.
- W4309078923 hasConcept C41008148 @default.
- W4309078923 hasConcept C50644808 @default.
- W4309078923 hasConcept C62520636 @default.
- W4309078923 hasConcept C71924100 @default.
- W4309078923 hasConcept C81363708 @default.
- W4309078923 hasConcept C83581075 @default.
- W4309078923 hasConceptScore W4309078923C121332964 @default.
- W4309078923 hasConceptScore W4309078923C127313418 @default.
- W4309078923 hasConceptScore W4309078923C142724271 @default.
- W4309078923 hasConceptScore W4309078923C146357865 @default.
- W4309078923 hasConceptScore W4309078923C151730666 @default.
- W4309078923 hasConceptScore W4309078923C153180895 @default.
- W4309078923 hasConceptScore W4309078923C154945302 @default.
- W4309078923 hasConceptScore W4309078923C2776256026 @default.
- W4309078923 hasConceptScore W4309078923C41008148 @default.
- W4309078923 hasConceptScore W4309078923C50644808 @default.
- W4309078923 hasConceptScore W4309078923C62520636 @default.
- W4309078923 hasConceptScore W4309078923C71924100 @default.
- W4309078923 hasConceptScore W4309078923C81363708 @default.
- W4309078923 hasConceptScore W4309078923C83581075 @default.
- W4309078923 hasLocation W43090789231 @default.
- W4309078923 hasOpenAccess W4309078923 @default.
- W4309078923 hasPrimaryLocation W43090789231 @default.
- W4309078923 hasRelatedWork W2175746458 @default.
- W4309078923 hasRelatedWork W2406522397 @default.
- W4309078923 hasRelatedWork W2613736958 @default.
- W4309078923 hasRelatedWork W2726121760 @default.
- W4309078923 hasRelatedWork W2732542196 @default.
- W4309078923 hasRelatedWork W2738221750 @default.
- W4309078923 hasRelatedWork W2760085659 @default.
- W4309078923 hasRelatedWork W2912288872 @default.
- W4309078923 hasRelatedWork W3012978760 @default.
- W4309078923 hasRelatedWork W3093612317 @default.
- W4309078923 hasVolume "80" @default.
- W4309078923 isParatext "false" @default.
- W4309078923 isRetracted "false" @default.