Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309079819> ?p ?o ?g. }
- W4309079819 endingPage "115741" @default.
- W4309079819 startingPage "115741" @default.
- W4309079819 abstract "In the present work, 3D convolutional neural networks (CNNs) are trained to link random heterogeneous, multiphase materials to their elastic macroscale stiffness thus replacing explicit homogenization simulations. The proposed CNN model is universal in that it accounts for various types of microstructures, for arbitrary phase fractions, non-constant and thereby very large ranges of Young’s moduli of the constituent phases (from 1 to 1000 GPa) and of their Poisson’s ratios (from 0 to 0.4). Moreover, the CNN predicts the stiffness for periodic boundary conditions (BCs) along with its upper bound through kinematically uniform BCs and its lower bound through stress uniform BCs. The triple of BCs reduces the stiffness uncertainty due to the embedding of the material volume into arbitrary adjacent host materials. Beyond, the stiffness bounds provide an indicator for the proper size of a representative volume element. The proposed universal CNN model achieves high accuracy in its predictions. The reasons for the rare outliers with larger errors are rigorously analyzed. For a real, two-phase diamond–SiC coating material the universal CNN is almost as accurate as a CNN exclusively trained for fixed elastic phase properties of that material. The speedup compared to finite element computations for homogenization is above factor 20 500. The proposed CNN model hence enables fast and accurate stiffness predictions in universal analyses of heterogeneous materials in their linear elastic regime." @default.
- W4309079819 created "2022-11-21" @default.
- W4309079819 creator A5087597359 @default.
- W4309079819 date "2023-01-01" @default.
- W4309079819 modified "2023-09-30" @default.
- W4309079819 title "Deep CNNs as universal predictors of elasticity tensors in homogenization" @default.
- W4309079819 cites W1866397848 @default.
- W4309079819 cites W1989993440 @default.
- W4309079819 cites W1993130704 @default.
- W4309079819 cites W2001772063 @default.
- W4309079819 cites W2007650703 @default.
- W4309079819 cites W2018941619 @default.
- W4309079819 cites W2020077459 @default.
- W4309079819 cites W2034222383 @default.
- W4309079819 cites W2038341609 @default.
- W4309079819 cites W2042650924 @default.
- W4309079819 cites W2059224163 @default.
- W4309079819 cites W2076063813 @default.
- W4309079819 cites W2093083737 @default.
- W4309079819 cites W2108888387 @default.
- W4309079819 cites W2138940269 @default.
- W4309079819 cites W2145926269 @default.
- W4309079819 cites W2147800946 @default.
- W4309079819 cites W2465381142 @default.
- W4309079819 cites W2584052967 @default.
- W4309079819 cites W2760710953 @default.
- W4309079819 cites W2800048654 @default.
- W4309079819 cites W2802951432 @default.
- W4309079819 cites W2803170602 @default.
- W4309079819 cites W2884529566 @default.
- W4309079819 cites W2888331556 @default.
- W4309079819 cites W2904049191 @default.
- W4309079819 cites W2908848055 @default.
- W4309079819 cites W2910034952 @default.
- W4309079819 cites W2919115771 @default.
- W4309079819 cites W2942240074 @default.
- W4309079819 cites W2946680784 @default.
- W4309079819 cites W2963459284 @default.
- W4309079819 cites W2982353498 @default.
- W4309079819 cites W2997920388 @default.
- W4309079819 cites W3008518994 @default.
- W4309079819 cites W3020474415 @default.
- W4309079819 cites W3023884839 @default.
- W4309079819 cites W3032752766 @default.
- W4309079819 cites W3034540853 @default.
- W4309079819 cites W3100321043 @default.
- W4309079819 cites W3107714972 @default.
- W4309079819 cites W3112842551 @default.
- W4309079819 cites W3117967209 @default.
- W4309079819 cites W3127535373 @default.
- W4309079819 cites W3157127629 @default.
- W4309079819 cites W3178027639 @default.
- W4309079819 cites W3183494825 @default.
- W4309079819 cites W3191042102 @default.
- W4309079819 cites W3191891057 @default.
- W4309079819 cites W3207277965 @default.
- W4309079819 cites W3214098784 @default.
- W4309079819 cites W3215085381 @default.
- W4309079819 cites W4220685827 @default.
- W4309079819 cites W4293016734 @default.
- W4309079819 cites W4295182447 @default.
- W4309079819 doi "https://doi.org/10.1016/j.cma.2022.115741" @default.
- W4309079819 hasPublicationYear "2023" @default.
- W4309079819 type Work @default.
- W4309079819 citedByCount "5" @default.
- W4309079819 countsByYear W43090798192023 @default.
- W4309079819 crossrefType "journal-article" @default.
- W4309079819 hasAuthorship W4309079819A5087597359 @default.
- W4309079819 hasBestOaLocation W43090798191 @default.
- W4309079819 hasConcept C104779481 @default.
- W4309079819 hasConcept C11413529 @default.
- W4309079819 hasConcept C121089165 @default.
- W4309079819 hasConcept C121332964 @default.
- W4309079819 hasConcept C121854251 @default.
- W4309079819 hasConcept C130217890 @default.
- W4309079819 hasConcept C134306372 @default.
- W4309079819 hasConcept C135628077 @default.
- W4309079819 hasConcept C154945302 @default.
- W4309079819 hasConcept C159985019 @default.
- W4309079819 hasConcept C160635147 @default.
- W4309079819 hasConcept C18903297 @default.
- W4309079819 hasConcept C192562407 @default.
- W4309079819 hasConcept C2524010 @default.
- W4309079819 hasConcept C2778722038 @default.
- W4309079819 hasConcept C2779372316 @default.
- W4309079819 hasConcept C3161131 @default.
- W4309079819 hasConcept C33923547 @default.
- W4309079819 hasConcept C37167619 @default.
- W4309079819 hasConcept C41008148 @default.
- W4309079819 hasConcept C45374587 @default.
- W4309079819 hasConcept C62520636 @default.
- W4309079819 hasConcept C77553402 @default.
- W4309079819 hasConcept C81363708 @default.
- W4309079819 hasConcept C86803240 @default.
- W4309079819 hasConcept C97355855 @default.
- W4309079819 hasConceptScore W4309079819C104779481 @default.
- W4309079819 hasConceptScore W4309079819C11413529 @default.
- W4309079819 hasConceptScore W4309079819C121089165 @default.