Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309079899> ?p ?o ?g. }
- W4309079899 endingPage "105120" @default.
- W4309079899 startingPage "105120" @default.
- W4309079899 abstract "Owing to the complicated mechanical behaviors of soils, their constitutive models often involve obscure formulations and suffer from poor applicability in engineering practice. In this study, a novel framework for the finite element (FE) analysis of geotechnical engineering problems is proposed, in which a deep learning (DL) model is employed to depict the constitutive behaviors of soils, circumventing the difficulties associated with conventional approaches. The DL model can incorporate different neural network architectures and is trained with stress–strain data, obtained either experimentally or numerically, before being integrated into the FE solver for analyzing various boundary value problems (BVPs). During the FE solution, the DL model receives strains at the Gauss integration points and returns the predicted stresses to advance the computation. The applicability and capacity of the framework were demonstrated by analyzing three BVPs, in which different geometries, meshes, and boundary conditions were considered. It was shown that the framework is capable of reproducing satisfactory solutions without resorting to any constitutive theory. Furthermore, the use of the DL model not only avoids the stress integration of the conventional FE analysis, but also leads to better computational efficiency." @default.
- W4309079899 created "2022-11-21" @default.
- W4309079899 creator A5006732636 @default.
- W4309079899 creator A5012776743 @default.
- W4309079899 creator A5045591217 @default.
- W4309079899 creator A5061523474 @default.
- W4309079899 date "2023-02-01" @default.
- W4309079899 modified "2023-09-27" @default.
- W4309079899 title "Finite element geotechnical analysis incorporating deep learning-based soil model" @default.
- W4309079899 cites W1916205177 @default.
- W4309079899 cites W1982435787 @default.
- W4309079899 cites W1993859452 @default.
- W4309079899 cites W2010030557 @default.
- W4309079899 cites W2036093555 @default.
- W4309079899 cites W2044680017 @default.
- W4309079899 cites W2051835934 @default.
- W4309079899 cites W2063670658 @default.
- W4309079899 cites W2064675550 @default.
- W4309079899 cites W2076063813 @default.
- W4309079899 cites W2107878631 @default.
- W4309079899 cites W2110886633 @default.
- W4309079899 cites W2112311198 @default.
- W4309079899 cites W2112796928 @default.
- W4309079899 cites W2131237834 @default.
- W4309079899 cites W2133578162 @default.
- W4309079899 cites W2155936757 @default.
- W4309079899 cites W2157402033 @default.
- W4309079899 cites W2160327429 @default.
- W4309079899 cites W2515157153 @default.
- W4309079899 cites W2626741497 @default.
- W4309079899 cites W2732154558 @default.
- W4309079899 cites W2753246113 @default.
- W4309079899 cites W2788766513 @default.
- W4309079899 cites W2897271806 @default.
- W4309079899 cites W2898206393 @default.
- W4309079899 cites W2919115771 @default.
- W4309079899 cites W2941889941 @default.
- W4309079899 cites W2946264706 @default.
- W4309079899 cites W2946782700 @default.
- W4309079899 cites W2999179815 @default.
- W4309079899 cites W2999772350 @default.
- W4309079899 cites W3009725319 @default.
- W4309079899 cites W3015176898 @default.
- W4309079899 cites W3015639472 @default.
- W4309079899 cites W3040235575 @default.
- W4309079899 cites W3085104379 @default.
- W4309079899 cites W3087676330 @default.
- W4309079899 cites W3092119380 @default.
- W4309079899 cites W3097375845 @default.
- W4309079899 cites W3109830572 @default.
- W4309079899 cites W3118249854 @default.
- W4309079899 cites W3126226156 @default.
- W4309079899 cites W3137262131 @default.
- W4309079899 cites W3139343051 @default.
- W4309079899 cites W3170283681 @default.
- W4309079899 cites W3175022037 @default.
- W4309079899 cites W3189238446 @default.
- W4309079899 cites W3192347548 @default.
- W4309079899 cites W3209160543 @default.
- W4309079899 cites W4226480439 @default.
- W4309079899 cites W4229065102 @default.
- W4309079899 cites W4292296291 @default.
- W4309079899 doi "https://doi.org/10.1016/j.compgeo.2022.105120" @default.
- W4309079899 hasPublicationYear "2023" @default.
- W4309079899 type Work @default.
- W4309079899 citedByCount "3" @default.
- W4309079899 countsByYear W43090798992023 @default.
- W4309079899 crossrefType "journal-article" @default.
- W4309079899 hasAuthorship W4309079899A5006732636 @default.
- W4309079899 hasAuthorship W4309079899A5012776743 @default.
- W4309079899 hasAuthorship W4309079899A5045591217 @default.
- W4309079899 hasAuthorship W4309079899A5061523474 @default.
- W4309079899 hasConcept C11413529 @default.
- W4309079899 hasConcept C121684516 @default.
- W4309079899 hasConcept C126255220 @default.
- W4309079899 hasConcept C127413603 @default.
- W4309079899 hasConcept C134306372 @default.
- W4309079899 hasConcept C135628077 @default.
- W4309079899 hasConcept C138885662 @default.
- W4309079899 hasConcept C154945302 @default.
- W4309079899 hasConcept C182310444 @default.
- W4309079899 hasConcept C187320778 @default.
- W4309079899 hasConcept C202973686 @default.
- W4309079899 hasConcept C21036866 @default.
- W4309079899 hasConcept C2778770139 @default.
- W4309079899 hasConcept C28826006 @default.
- W4309079899 hasConcept C3019612716 @default.
- W4309079899 hasConcept C31487907 @default.
- W4309079899 hasConcept C33923547 @default.
- W4309079899 hasConcept C41008148 @default.
- W4309079899 hasConcept C41895202 @default.
- W4309079899 hasConcept C45374587 @default.
- W4309079899 hasConcept C459310 @default.
- W4309079899 hasConcept C50644808 @default.
- W4309079899 hasConcept C62354387 @default.
- W4309079899 hasConcept C66938386 @default.
- W4309079899 hasConceptScore W4309079899C11413529 @default.
- W4309079899 hasConceptScore W4309079899C121684516 @default.