Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309080710> ?p ?o ?g. }
- W4309080710 endingPage "108004" @default.
- W4309080710 startingPage "108004" @default.
- W4309080710 abstract "Timely and accurate estimation of crop evapotranspiration (ETc) is essential for efficient irrigation management at the farmland scale. However, effective decision-making for irrigation scheduling requires high spatiotemporal-resolution data to provide within-field heterogeneity information. The objective of this study was to evaluate the use of optical and thermal information obtained from an unmanned aerial vehicle (UAV) to quantify maize (Zea mays L.) ETc within the framework of the FAO-56 dual crop coefficient approach. Canopy temperature-based crop water stress index (CWSI) and number of degrees above canopy threshold (DACT) were used to determine the stress coefficient (Ks). Three types of normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) were adopted to determine basal crop coefficient (Kcb). Then the two forms of stress coefficient in combination with three vegetation indices (VIs) were evaluated to estimate daily crop ETc under different irrigation treatments over two years in the southwest region of Inner Mongolia, China. The results demonstrated that the combination of NDVI and CWSI produced the best estimates of maize ETc, with R2 of 0.84 and root mean square error (RMSE) of 0.50 mm/day. The DACT-based model also performed well, with R2 of 0.77–0.80 and RMSE of 0.53 mm/day. Although the results varied with irrigation levels, the daily mean bias error of ETc predictions over different years indicated acceptable accuracy, with a mean bias error (MBE) of 0.48 mm/day. Sensitivity analyses indicated that ETc models were most sensitive to the slope of the linear regression between Kcb and VIs, followed by soil evaporation constant and influential factor in Ks_DACT. From this study, the combinations of vegetation index and CWSI, as well as DACT, were recommended as alternative approaches for estimating ETc due to intrinsic simplicity and easy interpretation. These ETc models relying on UAV-based multi-sensor data thus show promising potential in farmland-scale applications." @default.
- W4309080710 created "2022-11-21" @default.
- W4309080710 creator A5008928126 @default.
- W4309080710 creator A5061284144 @default.
- W4309080710 creator A5063896198 @default.
- W4309080710 creator A5071773009 @default.
- W4309080710 creator A5084421942 @default.
- W4309080710 date "2023-01-01" @default.
- W4309080710 modified "2023-10-01" @default.
- W4309080710 title "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach" @default.
- W4309080710 cites W1894250892 @default.
- W4309080710 cites W1963971536 @default.
- W4309080710 cites W1964217023 @default.
- W4309080710 cites W1965106709 @default.
- W4309080710 cites W1969637737 @default.
- W4309080710 cites W1974036734 @default.
- W4309080710 cites W1976796180 @default.
- W4309080710 cites W1989062841 @default.
- W4309080710 cites W1992287881 @default.
- W4309080710 cites W1994791976 @default.
- W4309080710 cites W1998597536 @default.
- W4309080710 cites W1998943389 @default.
- W4309080710 cites W2004415796 @default.
- W4309080710 cites W2011131168 @default.
- W4309080710 cites W2037350775 @default.
- W4309080710 cites W2047445539 @default.
- W4309080710 cites W2056251274 @default.
- W4309080710 cites W2070388163 @default.
- W4309080710 cites W2074793181 @default.
- W4309080710 cites W2077946028 @default.
- W4309080710 cites W2082312333 @default.
- W4309080710 cites W2099890263 @default.
- W4309080710 cites W2114002886 @default.
- W4309080710 cites W2115385872 @default.
- W4309080710 cites W2121661022 @default.
- W4309080710 cites W2129016866 @default.
- W4309080710 cites W2133506218 @default.
- W4309080710 cites W2139244996 @default.
- W4309080710 cites W2139925058 @default.
- W4309080710 cites W2144260204 @default.
- W4309080710 cites W2154083639 @default.
- W4309080710 cites W2165919818 @default.
- W4309080710 cites W2224702553 @default.
- W4309080710 cites W2501412768 @default.
- W4309080710 cites W2503851191 @default.
- W4309080710 cites W2515382892 @default.
- W4309080710 cites W2515492367 @default.
- W4309080710 cites W2517683569 @default.
- W4309080710 cites W2527263232 @default.
- W4309080710 cites W2560272190 @default.
- W4309080710 cites W2599412217 @default.
- W4309080710 cites W2613315877 @default.
- W4309080710 cites W2613921977 @default.
- W4309080710 cites W2762524281 @default.
- W4309080710 cites W2792792330 @default.
- W4309080710 cites W2808122040 @default.
- W4309080710 cites W2892242614 @default.
- W4309080710 cites W2894878792 @default.
- W4309080710 cites W2920930972 @default.
- W4309080710 cites W2922028018 @default.
- W4309080710 doi "https://doi.org/10.1016/j.agwat.2022.108004" @default.
- W4309080710 hasPublicationYear "2023" @default.
- W4309080710 type Work @default.
- W4309080710 citedByCount "2" @default.
- W4309080710 countsByYear W43090807102023 @default.
- W4309080710 crossrefType "journal-article" @default.
- W4309080710 hasAuthorship W4309080710A5008928126 @default.
- W4309080710 hasAuthorship W4309080710A5061284144 @default.
- W4309080710 hasAuthorship W4309080710A5063896198 @default.
- W4309080710 hasAuthorship W4309080710A5071773009 @default.
- W4309080710 hasAuthorship W4309080710A5084421942 @default.
- W4309080710 hasBestOaLocation W43090807101 @default.
- W4309080710 hasConcept C101000010 @default.
- W4309080710 hasConcept C105795698 @default.
- W4309080710 hasConcept C112077630 @default.
- W4309080710 hasConcept C128990827 @default.
- W4309080710 hasConcept C139945424 @default.
- W4309080710 hasConcept C1549246 @default.
- W4309080710 hasConcept C159390177 @default.
- W4309080710 hasConcept C159750122 @default.
- W4309080710 hasConcept C166957645 @default.
- W4309080710 hasConcept C176783924 @default.
- W4309080710 hasConcept C18903297 @default.
- W4309080710 hasConcept C205649164 @default.
- W4309080710 hasConcept C25989453 @default.
- W4309080710 hasConcept C2777589951 @default.
- W4309080710 hasConcept C2780376076 @default.
- W4309080710 hasConcept C33923547 @default.
- W4309080710 hasConcept C39432304 @default.
- W4309080710 hasConcept C62649853 @default.
- W4309080710 hasConcept C6557445 @default.
- W4309080710 hasConcept C72551326 @default.
- W4309080710 hasConcept C78869512 @default.
- W4309080710 hasConcept C86803240 @default.
- W4309080710 hasConcept C88862950 @default.
- W4309080710 hasConceptScore W4309080710C101000010 @default.
- W4309080710 hasConceptScore W4309080710C105795698 @default.
- W4309080710 hasConceptScore W4309080710C112077630 @default.