Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309087079> ?p ?o ?g. }
- W4309087079 endingPage "3640" @default.
- W4309087079 startingPage "3623" @default.
- W4309087079 abstract "Accurately prediction of discharge coefficient through radial gates is considered as a challenging hydraulic subject, particularly under highly submerged flow conditions. Incurring the advantages of kernel-depend extreme learning machine (KELM), this study offers a grey wolf optimization-based KELM (GWO-KELM) for effective prediction of discharge coefficient through submerged radial gates. Additionally, support vector machine (SVM) and Gaussian process regression (GPR) methods are also presented for comparative purposes. To build prediction models using GWO-KELM, GPR, and SVM, an extensive experimental database was established, consisting of 2125 data samples gathered by the US Bureau of Reclamation. From simulation results, it is observed that the proposed GWO-KELM approach with radial basis function and input parameters of the ratio of the downstream flow depth to the gate opening and submergence ratio provides the best performance with the correlation coefficient (R) of 0.983, the determination coefficient (DC) of 0.966 and the root-mean-squared error (RMSE) of 0.027. The obtained results showed that the proposed GWO-KELM with RBF kernel function gives better prediction accuracy than employed GPR and SVM approaches. Furthermore, the obtained results showed that the employed kernel-depend methods are capable of a statistically predicting the discharge coefficient under varied submergence conditions with satisfactory level of accuracy. Amon theme, proposed hybrid GWO-KELM method gave the most accurate results (R = 0.873, DC = 0.744, and RMSE = 0.035) for extremely highly submerged flow. Moreover, the results reflected that the employed kernel-depend methods give better predictions than the developed dimensionless formulas." @default.
- W4309087079 created "2022-11-21" @default.
- W4309087079 creator A5033247515 @default.
- W4309087079 creator A5047018812 @default.
- W4309087079 creator A5068162078 @default.
- W4309087079 date "2022-11-15" @default.
- W4309087079 modified "2023-09-27" @default.
- W4309087079 title "An efficient hybrid grey wolf optimization-based KELM approach for prediction of the discharge coefficient of submerged radial gates" @default.
- W4309087079 cites W171189922 @default.
- W4309087079 cites W1971423803 @default.
- W4309087079 cites W1971595636 @default.
- W4309087079 cites W1986785815 @default.
- W4309087079 cites W2026131661 @default.
- W4309087079 cites W2061438946 @default.
- W4309087079 cites W2103659524 @default.
- W4309087079 cites W2111072639 @default.
- W4309087079 cites W2113928510 @default.
- W4309087079 cites W2120646617 @default.
- W4309087079 cites W2162286275 @default.
- W4309087079 cites W2219870218 @default.
- W4309087079 cites W2288481434 @default.
- W4309087079 cites W2290024306 @default.
- W4309087079 cites W2299505830 @default.
- W4309087079 cites W2488520068 @default.
- W4309087079 cites W2528249405 @default.
- W4309087079 cites W2549576778 @default.
- W4309087079 cites W2615743202 @default.
- W4309087079 cites W2621190595 @default.
- W4309087079 cites W2806690950 @default.
- W4309087079 cites W2916179546 @default.
- W4309087079 cites W2918687283 @default.
- W4309087079 cites W2964075463 @default.
- W4309087079 cites W2970169838 @default.
- W4309087079 cites W2981558949 @default.
- W4309087079 cites W3003549087 @default.
- W4309087079 cites W3026002526 @default.
- W4309087079 cites W3112347790 @default.
- W4309087079 cites W3128248034 @default.
- W4309087079 cites W3168866685 @default.
- W4309087079 cites W3179259637 @default.
- W4309087079 cites W3182594420 @default.
- W4309087079 cites W3184693939 @default.
- W4309087079 cites W3195164509 @default.
- W4309087079 cites W3204943011 @default.
- W4309087079 cites W3205192055 @default.
- W4309087079 cites W4200105493 @default.
- W4309087079 cites W4207053476 @default.
- W4309087079 cites W4229454371 @default.
- W4309087079 cites W4240032516 @default.
- W4309087079 cites W4282575297 @default.
- W4309087079 doi "https://doi.org/10.1007/s00500-022-07614-7" @default.
- W4309087079 hasPublicationYear "2022" @default.
- W4309087079 type Work @default.
- W4309087079 citedByCount "2" @default.
- W4309087079 countsByYear W43090870792023 @default.
- W4309087079 crossrefType "journal-article" @default.
- W4309087079 hasAuthorship W4309087079A5033247515 @default.
- W4309087079 hasAuthorship W4309087079A5047018812 @default.
- W4309087079 hasAuthorship W4309087079A5068162078 @default.
- W4309087079 hasBestOaLocation W43090870792 @default.
- W4309087079 hasConcept C105795698 @default.
- W4309087079 hasConcept C11413529 @default.
- W4309087079 hasConcept C114614502 @default.
- W4309087079 hasConcept C119857082 @default.
- W4309087079 hasConcept C121332964 @default.
- W4309087079 hasConcept C12267149 @default.
- W4309087079 hasConcept C127413603 @default.
- W4309087079 hasConcept C139945424 @default.
- W4309087079 hasConcept C154945302 @default.
- W4309087079 hasConcept C163716315 @default.
- W4309087079 hasConcept C170028559 @default.
- W4309087079 hasConcept C2780092901 @default.
- W4309087079 hasConcept C2780150128 @default.
- W4309087079 hasConcept C33923547 @default.
- W4309087079 hasConcept C41008148 @default.
- W4309087079 hasConcept C50644808 @default.
- W4309087079 hasConcept C56200935 @default.
- W4309087079 hasConcept C62520636 @default.
- W4309087079 hasConcept C7218915 @default.
- W4309087079 hasConcept C74193536 @default.
- W4309087079 hasConcept C78519656 @default.
- W4309087079 hasConcept C81692654 @default.
- W4309087079 hasConcept C98856871 @default.
- W4309087079 hasConceptScore W4309087079C105795698 @default.
- W4309087079 hasConceptScore W4309087079C11413529 @default.
- W4309087079 hasConceptScore W4309087079C114614502 @default.
- W4309087079 hasConceptScore W4309087079C119857082 @default.
- W4309087079 hasConceptScore W4309087079C121332964 @default.
- W4309087079 hasConceptScore W4309087079C12267149 @default.
- W4309087079 hasConceptScore W4309087079C127413603 @default.
- W4309087079 hasConceptScore W4309087079C139945424 @default.
- W4309087079 hasConceptScore W4309087079C154945302 @default.
- W4309087079 hasConceptScore W4309087079C163716315 @default.
- W4309087079 hasConceptScore W4309087079C170028559 @default.
- W4309087079 hasConceptScore W4309087079C2780092901 @default.
- W4309087079 hasConceptScore W4309087079C2780150128 @default.
- W4309087079 hasConceptScore W4309087079C33923547 @default.
- W4309087079 hasConceptScore W4309087079C41008148 @default.