Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309089910> ?p ?o ?g. }
- W4309089910 endingPage "14324" @default.
- W4309089910 startingPage "14324" @default.
- W4309089910 abstract "Citizen science platforms, social media and smart phone applications enable the collection of large amounts of georeferenced images. This provides a huge opportunity in biodiversity and ecological research, but also creates challenges for efficient data handling and processing. Recreational and small-scale fisheries is one of the fields that could be revolutionised by efficient, widely accessible and machine learning-based processing of georeferenced images. Most non-commercial inland and coastal fisheries are considered data poor and are rarely assessed, yet they provide multiple societal benefits and can have substantial ecological impacts. Given that large quantities of georeferenced fish images are being collected by fishers every day, artificial intelligence (AI) and computer vision applications offer a great opportunity to automate their analyses by providing species identification, and potentially also fish size estimation. This would deliver data needed for fisheries management and fisher engagement. To date, however, many AI image analysis applications in fisheries are focused on the commercial sector, limited to specific species or settings, and are not publicly available. In addition, using AI and computer vision tools often requires a strong background in programming. In this study, we aim to facilitate broader use of computer vision tools in fisheries and ecological research by compiling an open-source user friendly and modular framework for large-scale image storage, handling, annotation and automatic classification, using cost- and labour-efficient methodologies. The tool is based on TensorFlow Lite Model Maker library, and includes data augmentation and transfer learning techniques applied to different convolutional neural network models. We demonstrate the potential application of this framework using a small example dataset of fish images taken through a recreational fishing smartphone application. The framework presented here can be used to develop region-specific species identification models, which could potentially be combined into a larger hierarchical model." @default.
- W4309089910 created "2022-11-21" @default.
- W4309089910 creator A5010203874 @default.
- W4309089910 creator A5017886169 @default.
- W4309089910 creator A5022606492 @default.
- W4309089910 creator A5078632684 @default.
- W4309089910 creator A5080333637 @default.
- W4309089910 date "2022-11-02" @default.
- W4309089910 modified "2023-10-06" @default.
- W4309089910 title "A Scalable Open-Source Framework for Machine Learning-Based Image Collection, Annotation and Classification: A Case Study for Automatic Fish Species Identification" @default.
- W4309089910 cites W2100704846 @default.
- W4309089910 cites W2108598243 @default.
- W4309089910 cites W2117539524 @default.
- W4309089910 cites W2166825415 @default.
- W4309089910 cites W2194775991 @default.
- W4309089910 cites W2525116809 @default.
- W4309089910 cites W2783680221 @default.
- W4309089910 cites W2809598685 @default.
- W4309089910 cites W2895763047 @default.
- W4309089910 cites W2899627579 @default.
- W4309089910 cites W2907066318 @default.
- W4309089910 cites W2908162093 @default.
- W4309089910 cites W2915594101 @default.
- W4309089910 cites W2954959100 @default.
- W4309089910 cites W2954996726 @default.
- W4309089910 cites W2970602317 @default.
- W4309089910 cites W3099319035 @default.
- W4309089910 cites W3101882182 @default.
- W4309089910 cites W3130618688 @default.
- W4309089910 cites W3153852767 @default.
- W4309089910 cites W3165641988 @default.
- W4309089910 cites W3195489344 @default.
- W4309089910 cites W3213506477 @default.
- W4309089910 cites W3215478087 @default.
- W4309089910 cites W3215761318 @default.
- W4309089910 cites W4221090481 @default.
- W4309089910 cites W4234971943 @default.
- W4309089910 cites W4246070010 @default.
- W4309089910 cites W4288083516 @default.
- W4309089910 doi "https://doi.org/10.3390/su142114324" @default.
- W4309089910 hasPublicationYear "2022" @default.
- W4309089910 type Work @default.
- W4309089910 citedByCount "1" @default.
- W4309089910 countsByYear W43090899102023 @default.
- W4309089910 crossrefType "journal-article" @default.
- W4309089910 hasAuthorship W4309089910A5010203874 @default.
- W4309089910 hasAuthorship W4309089910A5017886169 @default.
- W4309089910 hasAuthorship W4309089910A5022606492 @default.
- W4309089910 hasAuthorship W4309089910A5078632684 @default.
- W4309089910 hasAuthorship W4309089910A5080333637 @default.
- W4309089910 hasBestOaLocation W43090899101 @default.
- W4309089910 hasConcept C101468663 @default.
- W4309089910 hasConcept C105795698 @default.
- W4309089910 hasConcept C111919701 @default.
- W4309089910 hasConcept C116834253 @default.
- W4309089910 hasConcept C119857082 @default.
- W4309089910 hasConcept C133462117 @default.
- W4309089910 hasConcept C136764020 @default.
- W4309089910 hasConcept C154945302 @default.
- W4309089910 hasConcept C18903297 @default.
- W4309089910 hasConcept C197352329 @default.
- W4309089910 hasConcept C205649164 @default.
- W4309089910 hasConcept C2522767166 @default.
- W4309089910 hasConcept C2778755073 @default.
- W4309089910 hasConcept C33923547 @default.
- W4309089910 hasConcept C41008148 @default.
- W4309089910 hasConcept C48044578 @default.
- W4309089910 hasConcept C518677369 @default.
- W4309089910 hasConcept C58640448 @default.
- W4309089910 hasConcept C59822182 @default.
- W4309089910 hasConcept C77088390 @default.
- W4309089910 hasConcept C86803240 @default.
- W4309089910 hasConceptScore W4309089910C101468663 @default.
- W4309089910 hasConceptScore W4309089910C105795698 @default.
- W4309089910 hasConceptScore W4309089910C111919701 @default.
- W4309089910 hasConceptScore W4309089910C116834253 @default.
- W4309089910 hasConceptScore W4309089910C119857082 @default.
- W4309089910 hasConceptScore W4309089910C133462117 @default.
- W4309089910 hasConceptScore W4309089910C136764020 @default.
- W4309089910 hasConceptScore W4309089910C154945302 @default.
- W4309089910 hasConceptScore W4309089910C18903297 @default.
- W4309089910 hasConceptScore W4309089910C197352329 @default.
- W4309089910 hasConceptScore W4309089910C205649164 @default.
- W4309089910 hasConceptScore W4309089910C2522767166 @default.
- W4309089910 hasConceptScore W4309089910C2778755073 @default.
- W4309089910 hasConceptScore W4309089910C33923547 @default.
- W4309089910 hasConceptScore W4309089910C41008148 @default.
- W4309089910 hasConceptScore W4309089910C48044578 @default.
- W4309089910 hasConceptScore W4309089910C518677369 @default.
- W4309089910 hasConceptScore W4309089910C58640448 @default.
- W4309089910 hasConceptScore W4309089910C59822182 @default.
- W4309089910 hasConceptScore W4309089910C77088390 @default.
- W4309089910 hasConceptScore W4309089910C86803240 @default.
- W4309089910 hasFunder F4320335322 @default.
- W4309089910 hasIssue "21" @default.
- W4309089910 hasLocation W43090899101 @default.
- W4309089910 hasLocation W43090899102 @default.
- W4309089910 hasLocation W43090899103 @default.