Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309089988> ?p ?o ?g. }
- W4309089988 endingPage "11130" @default.
- W4309089988 startingPage "11130" @default.
- W4309089988 abstract "In this paper, a gated recurrent unit–deep neural network (GRU-DNN) model integrated with multimodal feature embedding (MFE) is developed to evaluate the real-time risk of hazmat road transportation based on various types of data for contributing factors. MFE was incorporated into the framework of a deep learning model in which discrete variables, continuous variables, and images were uniformly embedded. GRU is a pre-trained sub-model, and the DNN is able to directly use the relative structure and weights of the GRU, improving the poor classification and recognition results due to insufficient samples. Additionally, the model is trained and validated based on hazmat road transportation database consisting of 2100 samples with 20 real-time contributing factors and four risk levels in China. The accuracy (ACC), precision (PR), recall (RE), F1-score (F1), and areas under receiver-operating-characteristic curves (AUC) of the proposed model and other commonly used models are compared as performance measurements in numerical examples. Finally, Carlini & Wagner attack and three defenses of adversarial training, dimensionality reduction and prediction similarity are proposed in the training to improve the robustness of the model, alleviating the impact of noise and error on small-sized samples. The results demonstrate that the average ACC of the model reaches 93.51% and 87.6% on the training and validation sets, respectively. The prediction of accidents resulting in injury is the most accurate, followed by fatal accidents. Combined with the RE of 89.0%, the model exhibits excellent performance. In addition, the proposed model outperforms other widely used models based on the overall comparisons of ACC, AUC, F1 and PR-RE curve. Finally, prediction similarity can be used as an effective approach for robustness improvement, with the launched adversarial attacks being detected at a high success rate." @default.
- W4309089988 created "2022-11-21" @default.
- W4309089988 creator A5030676684 @default.
- W4309089988 creator A5039223272 @default.
- W4309089988 creator A5041199008 @default.
- W4309089988 creator A5055040493 @default.
- W4309089988 creator A5075872658 @default.
- W4309089988 date "2022-11-02" @default.
- W4309089988 modified "2023-09-26" @default.
- W4309089988 title "Real-Time Risk Assessment for Road Transportation of Hazardous Materials Based on GRU-DNN with Multimodal Feature Embedding" @default.
- W4309089988 cites W1663785051 @default.
- W4309089988 cites W1735552993 @default.
- W4309089988 cites W1968184120 @default.
- W4309089988 cites W1982589161 @default.
- W4309089988 cites W1984150218 @default.
- W4309089988 cites W2004353783 @default.
- W4309089988 cites W2008056655 @default.
- W4309089988 cites W2022682280 @default.
- W4309089988 cites W2052684427 @default.
- W4309089988 cites W2052902475 @default.
- W4309089988 cites W2101711129 @default.
- W4309089988 cites W2125283600 @default.
- W4309089988 cites W2163420600 @default.
- W4309089988 cites W2180612164 @default.
- W4309089988 cites W2243397390 @default.
- W4309089988 cites W2291721373 @default.
- W4309089988 cites W2495010685 @default.
- W4309089988 cites W2516358507 @default.
- W4309089988 cites W2565194925 @default.
- W4309089988 cites W2586573945 @default.
- W4309089988 cites W2606977969 @default.
- W4309089988 cites W2607219512 @default.
- W4309089988 cites W2618043096 @default.
- W4309089988 cites W2789894922 @default.
- W4309089988 cites W2800303555 @default.
- W4309089988 cites W2800398630 @default.
- W4309089988 cites W2808919226 @default.
- W4309089988 cites W2890178578 @default.
- W4309089988 cites W2899318436 @default.
- W4309089988 cites W2899743579 @default.
- W4309089988 cites W2938846476 @default.
- W4309089988 cites W2963564844 @default.
- W4309089988 cites W2963608065 @default.
- W4309089988 cites W2964995062 @default.
- W4309089988 cites W2973640899 @default.
- W4309089988 cites W2982083293 @default.
- W4309089988 cites W2990490493 @default.
- W4309089988 cites W2999860400 @default.
- W4309089988 cites W3001444716 @default.
- W4309089988 cites W3004779832 @default.
- W4309089988 cites W3017185270 @default.
- W4309089988 cites W3036286896 @default.
- W4309089988 cites W3087050764 @default.
- W4309089988 cites W3090533909 @default.
- W4309089988 cites W3117200447 @default.
- W4309089988 cites W3131573665 @default.
- W4309089988 cites W3133203932 @default.
- W4309089988 cites W3159178685 @default.
- W4309089988 cites W3159514290 @default.
- W4309089988 cites W3164576087 @default.
- W4309089988 cites W3168565360 @default.
- W4309089988 cites W3171093259 @default.
- W4309089988 cites W3177410622 @default.
- W4309089988 cites W3199084446 @default.
- W4309089988 cites W3217480472 @default.
- W4309089988 cites W3217781400 @default.
- W4309089988 cites W4220895585 @default.
- W4309089988 cites W4292550183 @default.
- W4309089988 cites W4294496030 @default.
- W4309089988 doi "https://doi.org/10.3390/app122111130" @default.
- W4309089988 hasPublicationYear "2022" @default.
- W4309089988 type Work @default.
- W4309089988 citedByCount "2" @default.
- W4309089988 countsByYear W43090899882023 @default.
- W4309089988 crossrefType "journal-article" @default.
- W4309089988 hasAuthorship W4309089988A5030676684 @default.
- W4309089988 hasAuthorship W4309089988A5039223272 @default.
- W4309089988 hasAuthorship W4309089988A5041199008 @default.
- W4309089988 hasAuthorship W4309089988A5055040493 @default.
- W4309089988 hasAuthorship W4309089988A5075872658 @default.
- W4309089988 hasBestOaLocation W43090899881 @default.
- W4309089988 hasConcept C104317684 @default.
- W4309089988 hasConcept C108583219 @default.
- W4309089988 hasConcept C119857082 @default.
- W4309089988 hasConcept C124101348 @default.
- W4309089988 hasConcept C153180895 @default.
- W4309089988 hasConcept C154945302 @default.
- W4309089988 hasConcept C185592680 @default.
- W4309089988 hasConcept C41008148 @default.
- W4309089988 hasConcept C41608201 @default.
- W4309089988 hasConcept C50644808 @default.
- W4309089988 hasConcept C55493867 @default.
- W4309089988 hasConcept C63479239 @default.
- W4309089988 hasConceptScore W4309089988C104317684 @default.
- W4309089988 hasConceptScore W4309089988C108583219 @default.
- W4309089988 hasConceptScore W4309089988C119857082 @default.
- W4309089988 hasConceptScore W4309089988C124101348 @default.
- W4309089988 hasConceptScore W4309089988C153180895 @default.