Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309091377> ?p ?o ?g. }
- W4309091377 endingPage "5531" @default.
- W4309091377 startingPage "5531" @default.
- W4309091377 abstract "The Mediterranean ecosystem exhibits a particular geology and climate, which is characterized by mild, rainy winters and long, very hot summers with low precipitation; it has led to the emergence of resilient plant species. Such habitats contain a preponderance of shrubs, and collectively harbor 10% of the Earth’s species, thus containing some of the most unique shrubby formations protecting against environmental natural degradation. Due to shrub species diversity, initial phases of forestland, heterogenous grasses, bare ground and stones, the monitoring of such areas is difficult. For this reason, the aim of this paper is to assess semi-automatic classifications of the shrubby formations based on multispectral Sentinel-2 and visible and near infrared (VINR) AISA-EAGLE II hyperspectral airborne images with a support of Canopy High Model (CHM) as a three-dimensional information and field-verified patterns, based on Match-T/DSM and aerial photos. Support Vector Machine (SVM) and Random Forest (RF) classifiers have been tested on a few scenarios featuring different combinations of spectral and Minimum Noise Fraction (MNF) transformed bands and vegetation indices. Referring to the results, the average overall accuracy for the SVM and AISA images (all tested data sets) was 78.23%, and for the RF: 79.85%. In the case of Sentinel-2, the SVM classifier obtained an average value of 83.63%, while RF: 85.32%; however, in the case of the shrubland, we would like to recommend the RF classifier, because the highest mean value of F1-score achieved was 91.86% (SVM offered few-percent-point worse results), and the required training time was quicker than SVM. Commonly available Sentinel-2 data offered higher accuracies for shrubland monitoring than did the airborne VNIR data." @default.
- W4309091377 created "2022-11-21" @default.
- W4309091377 creator A5006409894 @default.
- W4309091377 creator A5006698856 @default.
- W4309091377 creator A5007423484 @default.
- W4309091377 creator A5032234341 @default.
- W4309091377 creator A5042761248 @default.
- W4309091377 creator A5066799790 @default.
- W4309091377 creator A5077005450 @default.
- W4309091377 date "2022-11-02" @default.
- W4309091377 modified "2023-09-30" @default.
- W4309091377 title "Sentinel-2 and AISA Airborne Hyperspectral Images for Mediterranean Shrubland Mapping in Catalonia" @default.
- W4309091377 cites W1497089125 @default.
- W4309091377 cites W1998057965 @default.
- W4309091377 cites W2000613913 @default.
- W4309091377 cites W2011010318 @default.
- W4309091377 cites W2012686349 @default.
- W4309091377 cites W2030687892 @default.
- W4309091377 cites W2033735327 @default.
- W4309091377 cites W2044493711 @default.
- W4309091377 cites W2053154970 @default.
- W4309091377 cites W2076261730 @default.
- W4309091377 cites W2083187709 @default.
- W4309091377 cites W2086567813 @default.
- W4309091377 cites W2086780041 @default.
- W4309091377 cites W2087352616 @default.
- W4309091377 cites W2103304742 @default.
- W4309091377 cites W2113410727 @default.
- W4309091377 cites W2114635925 @default.
- W4309091377 cites W2132424470 @default.
- W4309091377 cites W2136251662 @default.
- W4309091377 cites W2136625467 @default.
- W4309091377 cites W2161815745 @default.
- W4309091377 cites W2172195373 @default.
- W4309091377 cites W2588393519 @default.
- W4309091377 cites W2589453516 @default.
- W4309091377 cites W2592612774 @default.
- W4309091377 cites W2606116651 @default.
- W4309091377 cites W2617056706 @default.
- W4309091377 cites W2621273283 @default.
- W4309091377 cites W2752367870 @default.
- W4309091377 cites W2771648944 @default.
- W4309091377 cites W2774789623 @default.
- W4309091377 cites W2775069442 @default.
- W4309091377 cites W2796189661 @default.
- W4309091377 cites W2805267817 @default.
- W4309091377 cites W2878970138 @default.
- W4309091377 cites W2895091864 @default.
- W4309091377 cites W2897147174 @default.
- W4309091377 cites W2897726141 @default.
- W4309091377 cites W2908408625 @default.
- W4309091377 cites W2910829991 @default.
- W4309091377 cites W2911964244 @default.
- W4309091377 cites W2942074968 @default.
- W4309091377 cites W2944973397 @default.
- W4309091377 cites W2947712179 @default.
- W4309091377 cites W2951425100 @default.
- W4309091377 cites W2990473467 @default.
- W4309091377 cites W2990827887 @default.
- W4309091377 cites W3013185492 @default.
- W4309091377 cites W3018425007 @default.
- W4309091377 cites W3025638046 @default.
- W4309091377 cites W3038077434 @default.
- W4309091377 cites W3080892035 @default.
- W4309091377 cites W3081716019 @default.
- W4309091377 cites W3088162569 @default.
- W4309091377 cites W3097937390 @default.
- W4309091377 cites W3104356922 @default.
- W4309091377 cites W3107349585 @default.
- W4309091377 cites W3133146351 @default.
- W4309091377 cites W3175987719 @default.
- W4309091377 cites W3178795721 @default.
- W4309091377 cites W3185840992 @default.
- W4309091377 cites W3193939865 @default.
- W4309091377 cites W3196284744 @default.
- W4309091377 cites W4200060788 @default.
- W4309091377 cites W4200281045 @default.
- W4309091377 cites W4200456823 @default.
- W4309091377 cites W4200509650 @default.
- W4309091377 cites W4206033663 @default.
- W4309091377 cites W4212768523 @default.
- W4309091377 cites W4213114688 @default.
- W4309091377 cites W4213210609 @default.
- W4309091377 cites W4214924952 @default.
- W4309091377 cites W4220927381 @default.
- W4309091377 cites W4284705627 @default.
- W4309091377 doi "https://doi.org/10.3390/rs14215531" @default.
- W4309091377 hasPublicationYear "2022" @default.
- W4309091377 type Work @default.
- W4309091377 citedByCount "2" @default.
- W4309091377 countsByYear W43090913772023 @default.
- W4309091377 crossrefType "journal-article" @default.
- W4309091377 hasAuthorship W4309091377A5006409894 @default.
- W4309091377 hasAuthorship W4309091377A5006698856 @default.
- W4309091377 hasAuthorship W4309091377A5007423484 @default.
- W4309091377 hasAuthorship W4309091377A5032234341 @default.
- W4309091377 hasAuthorship W4309091377A5042761248 @default.
- W4309091377 hasAuthorship W4309091377A5066799790 @default.