Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309096590> ?p ?o ?g. }
- W4309096590 endingPage "5895" @default.
- W4309096590 startingPage "5875" @default.
- W4309096590 abstract "Spatial proteomics is an interdisciplinary field that investigates the localization and dynamics of proteins, and it has gained extensive attention in recent years, especially the subcellular proteomics. Numerous evidence indicate that the subcellular localization of proteins is associated with various cellular processes and disease progression. Mass spectrometry (MS)-based and imaging-based experimental approaches have been developed to acquire large-scale spatial proteomic data. To allow the reliable analysis of increasingly complex spatial proteomics data, machine learning (ML) methods have been widely used in both MS-based and imaging-based spatial proteomic data analysis pipelines. Here, we comprehensively survey the applications of ML in spatial proteomics from following aspects: (1) data resources for spatial proteome are comprehensively introduced; (2) the roles of different ML algorithms in data analysis pipelines are elaborated; (3) successful applications of spatial proteomics and several analytical tools integrating ML methods are presented; (4) challenges existing in modern ML-based spatial proteomics studies are discussed. This review provides guidelines for researchers seeking to apply ML methods to analyze spatial proteomic data and can facilitate insightful understanding of cell biology as well as the future research in medical and drug discovery communities." @default.
- W4309096590 created "2022-11-21" @default.
- W4309096590 creator A5007119248 @default.
- W4309096590 creator A5018947021 @default.
- W4309096590 creator A5044283512 @default.
- W4309096590 creator A5047043274 @default.
- W4309096590 creator A5076458955 @default.
- W4309096590 creator A5079497415 @default.
- W4309096590 creator A5085405957 @default.
- W4309096590 date "2022-11-15" @default.
- W4309096590 modified "2023-10-17" @default.
- W4309096590 title "Application of Machine Learning in Spatial Proteomics" @default.
- W4309096590 cites W1205458192 @default.
- W4309096590 cites W1252261093 @default.
- W4309096590 cites W1967381824 @default.
- W4309096590 cites W1969014079 @default.
- W4309096590 cites W1976549250 @default.
- W4309096590 cites W1978838832 @default.
- W4309096590 cites W1979615468 @default.
- W4309096590 cites W1980496079 @default.
- W4309096590 cites W1980759842 @default.
- W4309096590 cites W1988195734 @default.
- W4309096590 cites W1991024525 @default.
- W4309096590 cites W1992489746 @default.
- W4309096590 cites W1995403127 @default.
- W4309096590 cites W1997626871 @default.
- W4309096590 cites W1998614190 @default.
- W4309096590 cites W1999211856 @default.
- W4309096590 cites W1999798000 @default.
- W4309096590 cites W2001858363 @default.
- W4309096590 cites W2003341701 @default.
- W4309096590 cites W2006246187 @default.
- W4309096590 cites W2008541887 @default.
- W4309096590 cites W2019062120 @default.
- W4309096590 cites W2022202723 @default.
- W4309096590 cites W2034400748 @default.
- W4309096590 cites W2035671523 @default.
- W4309096590 cites W2036248751 @default.
- W4309096590 cites W2048608623 @default.
- W4309096590 cites W2049497130 @default.
- W4309096590 cites W2054520266 @default.
- W4309096590 cites W2055034152 @default.
- W4309096590 cites W2056780622 @default.
- W4309096590 cites W2058274661 @default.
- W4309096590 cites W2064815984 @default.
- W4309096590 cites W2066604159 @default.
- W4309096590 cites W2067555018 @default.
- W4309096590 cites W2070554925 @default.
- W4309096590 cites W2071659396 @default.
- W4309096590 cites W2075650606 @default.
- W4309096590 cites W2080752012 @default.
- W4309096590 cites W2082407716 @default.
- W4309096590 cites W2097847369 @default.
- W4309096590 cites W2099540110 @default.
- W4309096590 cites W2101028856 @default.
- W4309096590 cites W2103688326 @default.
- W4309096590 cites W2104764521 @default.
- W4309096590 cites W2105707485 @default.
- W4309096590 cites W2106839391 @default.
- W4309096590 cites W2111321252 @default.
- W4309096590 cites W2112385576 @default.
- W4309096590 cites W2115746733 @default.
- W4309096590 cites W2120542866 @default.
- W4309096590 cites W2121710589 @default.
- W4309096590 cites W2129716198 @default.
- W4309096590 cites W2132692097 @default.
- W4309096590 cites W2132744522 @default.
- W4309096590 cites W2136343577 @default.
- W4309096590 cites W2139046195 @default.
- W4309096590 cites W2144337984 @default.
- W4309096590 cites W2153328834 @default.
- W4309096590 cites W2153582254 @default.
- W4309096590 cites W2155300232 @default.
- W4309096590 cites W2155806188 @default.
- W4309096590 cites W2156115869 @default.
- W4309096590 cites W2156355974 @default.
- W4309096590 cites W2160697532 @default.
- W4309096590 cites W2162064024 @default.
- W4309096590 cites W2162681116 @default.
- W4309096590 cites W2168297493 @default.
- W4309096590 cites W2169400314 @default.
- W4309096590 cites W2169805130 @default.
- W4309096590 cites W2169878906 @default.
- W4309096590 cites W2269649163 @default.
- W4309096590 cites W2272852695 @default.
- W4309096590 cites W2278050580 @default.
- W4309096590 cites W2318359812 @default.
- W4309096590 cites W2340102874 @default.
- W4309096590 cites W2419532700 @default.
- W4309096590 cites W2463195069 @default.
- W4309096590 cites W2467414813 @default.
- W4309096590 cites W2514288942 @default.
- W4309096590 cites W2518837957 @default.
- W4309096590 cites W2523341447 @default.
- W4309096590 cites W2548342201 @default.
- W4309096590 cites W2557794320 @default.
- W4309096590 cites W2559479590 @default.
- W4309096590 cites W2560298361 @default.