Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309102019> ?p ?o ?g. }
- W4309102019 endingPage "110109" @default.
- W4309102019 startingPage "110109" @default.
- W4309102019 abstract "Redescription mining aims at finding subsets of instances that can be re-described, characterized in multiple ways, using one or more disjoint sets of attributes that describe some set of instances. Current redescription mining algorithms either work with tabular data or with relational data — where binary relations between objects are used which allow representing descriptions as graphs. In this work, we propose novel type of redescription mining methodology that allows using tabular data in combination with background network information, where nodes of a network are instances in the tabular data. Background information is used to locate subsets of instances with some desired network property whereas tabular data are used to re-describe such interesting subsets. Methodology can be classified as constraint-based redescription mining, where we allow for a large variety of complex network-based soft constraints. The proposed framework is extensible, thus any network-related measure can be used to localize subsets of instances of interest. In addition, different types of network such as undirected, directed graphs, graph sequences or multiplex can be used as a background information. We demonstrate the applicability of the proposed framework on three use-case datasets involving country trade networks, biological (gene spatial) networks and social networks. The experimental evaluation demonstrates that the proposed approach outperforms existing, general redescription mining approaches with respect to intensity of network properties of the re-described instances without loss of accuracy, mostly even improving redescription accuracy." @default.
- W4309102019 created "2022-11-22" @default.
- W4309102019 creator A5032469420 @default.
- W4309102019 date "2023-01-01" @default.
- W4309102019 modified "2023-09-26" @default.
- W4309102019 title "Redescription mining on data with background network information" @default.
- W4309102019 cites W1128809682 @default.
- W4309102019 cites W1969353942 @default.
- W4309102019 cites W1972978214 @default.
- W4309102019 cites W1992419399 @default.
- W4309102019 cites W1995117714 @default.
- W4309102019 cites W1997648776 @default.
- W4309102019 cites W2014539558 @default.
- W4309102019 cites W2017439955 @default.
- W4309102019 cites W2030035054 @default.
- W4309102019 cites W2033078279 @default.
- W4309102019 cites W2045487373 @default.
- W4309102019 cites W2055400097 @default.
- W4309102019 cites W2059556222 @default.
- W4309102019 cites W2070632454 @default.
- W4309102019 cites W2077593512 @default.
- W4309102019 cites W2077716286 @default.
- W4309102019 cites W2096724435 @default.
- W4309102019 cites W2107717979 @default.
- W4309102019 cites W2108544558 @default.
- W4309102019 cites W2116007667 @default.
- W4309102019 cites W2133790733 @default.
- W4309102019 cites W2134495601 @default.
- W4309102019 cites W2148534039 @default.
- W4309102019 cites W2167822639 @default.
- W4309102019 cites W2169043220 @default.
- W4309102019 cites W2295258851 @default.
- W4309102019 cites W239305132 @default.
- W4309102019 cites W2420689629 @default.
- W4309102019 cites W2519496013 @default.
- W4309102019 cites W2577225361 @default.
- W4309102019 cites W2586778751 @default.
- W4309102019 cites W2591223744 @default.
- W4309102019 cites W2607472836 @default.
- W4309102019 cites W2735269276 @default.
- W4309102019 cites W2763578266 @default.
- W4309102019 cites W2770983033 @default.
- W4309102019 cites W2850100550 @default.
- W4309102019 cites W2888372228 @default.
- W4309102019 cites W2907005193 @default.
- W4309102019 cites W2954476005 @default.
- W4309102019 cites W2996518130 @default.
- W4309102019 cites W3020869967 @default.
- W4309102019 cites W3023082112 @default.
- W4309102019 cites W3038627120 @default.
- W4309102019 cites W3093301018 @default.
- W4309102019 cites W3103910047 @default.
- W4309102019 cites W3105618272 @default.
- W4309102019 cites W3126172375 @default.
- W4309102019 cites W3160578987 @default.
- W4309102019 cites W4232092089 @default.
- W4309102019 cites W4234536190 @default.
- W4309102019 doi "https://doi.org/10.1016/j.knosys.2022.110109" @default.
- W4309102019 hasPublicationYear "2023" @default.
- W4309102019 type Work @default.
- W4309102019 citedByCount "0" @default.
- W4309102019 crossrefType "journal-article" @default.
- W4309102019 hasAuthorship W4309102019A5032469420 @default.
- W4309102019 hasBestOaLocation W43091020191 @default.
- W4309102019 hasConcept C111472728 @default.
- W4309102019 hasConcept C114614502 @default.
- W4309102019 hasConcept C124101348 @default.
- W4309102019 hasConcept C127413603 @default.
- W4309102019 hasConcept C132525143 @default.
- W4309102019 hasConcept C136197465 @default.
- W4309102019 hasConcept C138885662 @default.
- W4309102019 hasConcept C154945302 @default.
- W4309102019 hasConcept C177264268 @default.
- W4309102019 hasConcept C189950617 @default.
- W4309102019 hasConcept C199360897 @default.
- W4309102019 hasConcept C2776036281 @default.
- W4309102019 hasConcept C28225019 @default.
- W4309102019 hasConcept C33923547 @default.
- W4309102019 hasConcept C41008148 @default.
- W4309102019 hasConcept C45340560 @default.
- W4309102019 hasConcept C60644358 @default.
- W4309102019 hasConcept C78519656 @default.
- W4309102019 hasConcept C80444323 @default.
- W4309102019 hasConcept C86803240 @default.
- W4309102019 hasConceptScore W4309102019C111472728 @default.
- W4309102019 hasConceptScore W4309102019C114614502 @default.
- W4309102019 hasConceptScore W4309102019C124101348 @default.
- W4309102019 hasConceptScore W4309102019C127413603 @default.
- W4309102019 hasConceptScore W4309102019C132525143 @default.
- W4309102019 hasConceptScore W4309102019C136197465 @default.
- W4309102019 hasConceptScore W4309102019C138885662 @default.
- W4309102019 hasConceptScore W4309102019C154945302 @default.
- W4309102019 hasConceptScore W4309102019C177264268 @default.
- W4309102019 hasConceptScore W4309102019C189950617 @default.
- W4309102019 hasConceptScore W4309102019C199360897 @default.
- W4309102019 hasConceptScore W4309102019C2776036281 @default.
- W4309102019 hasConceptScore W4309102019C28225019 @default.
- W4309102019 hasConceptScore W4309102019C33923547 @default.