Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309113124> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4309113124 endingPage "67" @default.
- W4309113124 startingPage "53" @default.
- W4309113124 abstract "Tuberculosis disease is one of the world's top infectious diseases that leads to a huge number of patient death worldwide. Tuberculosis gradually attacks the lungs of the patients, where Mycobacterium tuberculosis is one of the main reasons for tuberculosis attacks which are caused by the bacteria. As innovation of new techniques helps generation minimize the tasks or observation period, Machine learning is one of the popular techniques by which a person or an organization can easily build a model to evaluate data, generate ideas, or prediction of values. Machine learning algorithms are used enormously in different sectors, thus using Machine learning models in the health sector increasing rapidly. Health professionals can easily predict or observe a patient's disease using the previous history of the same patient or different similar patient's history. In the paper, tuberculosis patient's death rationale is harmonized from the World Health Organization dataset of tuberculosis disease’s class called causes and deaths, where the country Bangladesh's dataset has been used. Feature of the dataset is one of the main concerns of the patient's death, which is identified using the Machine learning regression and classification algorithm. Linear Regression, Logistic Regression, Decision tree, Random forest, KNN, XGB, Adaboost and algorithms are used in the process to create a model which can identify the best features and it is figured out that Random forest provides the best results. The prediction model for finding the number of death of patients build using the machine learning regression algorithms, where linear regression prediction accuracy is 0.99943, however, the linear model's features selection for the process are not the best noticeable. The random forest algorithm's prediction accuracy was found 0.97820, which is nearest to the linear regression accuracy. In one sentence, it is figured out that Random forest is the best-observed algorithm in both prediction accuracy and feature importance detection." @default.
- W4309113124 created "2022-11-22" @default.
- W4309113124 creator A5022516331 @default.
- W4309113124 creator A5038351255 @default.
- W4309113124 creator A5064225603 @default.
- W4309113124 date "2022-11-16" @default.
- W4309113124 modified "2023-10-17" @default.
- W4309113124 title "Analysis of Patient Tuberculosis Tenet Death Reason and Prediction in Bangladesh Using Machine Learning" @default.
- W4309113124 cites W2042416244 @default.
- W4309113124 cites W205420489 @default.
- W4309113124 cites W2102636708 @default.
- W4309113124 cites W2170855601 @default.
- W4309113124 cites W2778740878 @default.
- W4309113124 cites W2794172666 @default.
- W4309113124 cites W2901155787 @default.
- W4309113124 cites W2901847723 @default.
- W4309113124 cites W2971492877 @default.
- W4309113124 cites W2997763578 @default.
- W4309113124 cites W3013916086 @default.
- W4309113124 cites W3092125982 @default.
- W4309113124 cites W3156638091 @default.
- W4309113124 doi "https://doi.org/10.1007/978-981-19-4182-5_5" @default.
- W4309113124 hasPublicationYear "2022" @default.
- W4309113124 type Work @default.
- W4309113124 citedByCount "0" @default.
- W4309113124 crossrefType "book-chapter" @default.
- W4309113124 hasAuthorship W4309113124A5022516331 @default.
- W4309113124 hasAuthorship W4309113124A5038351255 @default.
- W4309113124 hasAuthorship W4309113124A5064225603 @default.
- W4309113124 hasConcept C105795698 @default.
- W4309113124 hasConcept C119857082 @default.
- W4309113124 hasConcept C12267149 @default.
- W4309113124 hasConcept C141404830 @default.
- W4309113124 hasConcept C142724271 @default.
- W4309113124 hasConcept C151956035 @default.
- W4309113124 hasConcept C154945302 @default.
- W4309113124 hasConcept C160735492 @default.
- W4309113124 hasConcept C162324750 @default.
- W4309113124 hasConcept C169258074 @default.
- W4309113124 hasConcept C2779134260 @default.
- W4309113124 hasConcept C2781069245 @default.
- W4309113124 hasConcept C33923547 @default.
- W4309113124 hasConcept C41008148 @default.
- W4309113124 hasConcept C50522688 @default.
- W4309113124 hasConcept C71924100 @default.
- W4309113124 hasConcept C83546350 @default.
- W4309113124 hasConcept C84525736 @default.
- W4309113124 hasConceptScore W4309113124C105795698 @default.
- W4309113124 hasConceptScore W4309113124C119857082 @default.
- W4309113124 hasConceptScore W4309113124C12267149 @default.
- W4309113124 hasConceptScore W4309113124C141404830 @default.
- W4309113124 hasConceptScore W4309113124C142724271 @default.
- W4309113124 hasConceptScore W4309113124C151956035 @default.
- W4309113124 hasConceptScore W4309113124C154945302 @default.
- W4309113124 hasConceptScore W4309113124C160735492 @default.
- W4309113124 hasConceptScore W4309113124C162324750 @default.
- W4309113124 hasConceptScore W4309113124C169258074 @default.
- W4309113124 hasConceptScore W4309113124C2779134260 @default.
- W4309113124 hasConceptScore W4309113124C2781069245 @default.
- W4309113124 hasConceptScore W4309113124C33923547 @default.
- W4309113124 hasConceptScore W4309113124C41008148 @default.
- W4309113124 hasConceptScore W4309113124C50522688 @default.
- W4309113124 hasConceptScore W4309113124C71924100 @default.
- W4309113124 hasConceptScore W4309113124C83546350 @default.
- W4309113124 hasConceptScore W4309113124C84525736 @default.
- W4309113124 hasLocation W43091131241 @default.
- W4309113124 hasOpenAccess W4309113124 @default.
- W4309113124 hasPrimaryLocation W43091131241 @default.
- W4309113124 hasRelatedWork W3083327307 @default.
- W4309113124 hasRelatedWork W3146991051 @default.
- W4309113124 hasRelatedWork W3170784702 @default.
- W4309113124 hasRelatedWork W3204641204 @default.
- W4309113124 hasRelatedWork W4200057378 @default.
- W4309113124 hasRelatedWork W4249229055 @default.
- W4309113124 hasRelatedWork W4280583453 @default.
- W4309113124 hasRelatedWork W4283313480 @default.
- W4309113124 hasRelatedWork W4293069612 @default.
- W4309113124 hasRelatedWork W4375930479 @default.
- W4309113124 isParatext "false" @default.
- W4309113124 isRetracted "false" @default.
- W4309113124 workType "book-chapter" @default.