Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309113432> ?p ?o ?g. }
- W4309113432 abstract "Background and Aim: Tacrolimus (TAC) is a first-line immunosuppressant for the treatment of refractory nephrotic syndrome (RNS), but the pharmacokinetics of TAC varies widely among individuals, and there is still no accurate model to predict the pharmacokinetics of TAC in RNS. Therefore, this study aimed to combine population pharmacokinetic (PPK) model and machine learning algorithms to develop a simple and accurate prediction model for TAC. Methods: 139 children with RNS from August 2013 to December 2018 were included, and blood samples of TAC trough and partial peak concentrations were collected. The blood concentration of TAC was determined by enzyme immunoassay; CYP3A5 was genotyped by polymerase chain reaction-restriction fragment length polymorphism method; MYH9, LAMB2, ACTN4 and other genotypes were determined by MALDI-TOF MS method; PPK model was established by nonlinear mixed-effects method. Based on this, six machine learning algorithms, including eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Extra-Trees, Gradient Boosting Decision Tree (GBDT), Adaptive boosting (AdaBoost) and Lasso, were used to establish the machine learning model of TAC clearance. Results: A one-compartment model of first-order absorption and elimination adequately described the pharmacokinetics of TAC. Age, co-administration of Wuzhi capsules, CYP3A5 *3/*3 genotype and CTLA4 rs4553808 genotype were significantly affecting the clearance of TAC. Among the six machine learning models, the Lasso algorithm model performed the best (R2 = 0.42). Conclusion: For the first time, a clearance prediction model of TAC in pediatric patients with RNS was established using PPK combined with machine learning, by which the individual clearance of TAC can be predicted more accurately, and the initial dose of administration can be optimized to achieve the goal of individualized treatment." @default.
- W4309113432 created "2022-11-22" @default.
- W4309113432 creator A5003642180 @default.
- W4309113432 creator A5009128337 @default.
- W4309113432 creator A5021541791 @default.
- W4309113432 creator A5027649946 @default.
- W4309113432 creator A5041289811 @default.
- W4309113432 creator A5042388548 @default.
- W4309113432 creator A5045121787 @default.
- W4309113432 creator A5055795755 @default.
- W4309113432 creator A5058576876 @default.
- W4309113432 creator A5068290213 @default.
- W4309113432 creator A5083142408 @default.
- W4309113432 creator A5084208504 @default.
- W4309113432 creator A5087207288 @default.
- W4309113432 date "2022-11-15" @default.
- W4309113432 modified "2023-10-17" @default.
- W4309113432 title "Tacrolimus pharmacokinetics in pediatric nephrotic syndrome: A combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction" @default.
- W4309113432 cites W1978373343 @default.
- W4309113432 cites W2024913341 @default.
- W4309113432 cites W2033139608 @default.
- W4309113432 cites W2045121044 @default.
- W4309113432 cites W2049535135 @default.
- W4309113432 cites W2050558251 @default.
- W4309113432 cites W2052715775 @default.
- W4309113432 cites W2087434766 @default.
- W4309113432 cites W2112830170 @default.
- W4309113432 cites W2133272865 @default.
- W4309113432 cites W2152064050 @default.
- W4309113432 cites W2170671339 @default.
- W4309113432 cites W2336139768 @default.
- W4309113432 cites W2504841950 @default.
- W4309113432 cites W2581036173 @default.
- W4309113432 cites W2587106090 @default.
- W4309113432 cites W2774512144 @default.
- W4309113432 cites W2796842808 @default.
- W4309113432 cites W2802101579 @default.
- W4309113432 cites W2808503484 @default.
- W4309113432 cites W2898885869 @default.
- W4309113432 cites W2913697934 @default.
- W4309113432 cites W2922058659 @default.
- W4309113432 cites W2923392966 @default.
- W4309113432 cites W2974142247 @default.
- W4309113432 cites W2974379499 @default.
- W4309113432 cites W2994880007 @default.
- W4309113432 cites W2998519853 @default.
- W4309113432 cites W3014226828 @default.
- W4309113432 cites W3035099720 @default.
- W4309113432 cites W3140342296 @default.
- W4309113432 cites W3143799435 @default.
- W4309113432 cites W3164138694 @default.
- W4309113432 cites W3185315990 @default.
- W4309113432 cites W3186074534 @default.
- W4309113432 cites W3192102617 @default.
- W4309113432 cites W4226107761 @default.
- W4309113432 cites W4281784146 @default.
- W4309113432 doi "https://doi.org/10.3389/fphar.2022.942129" @default.
- W4309113432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36457704" @default.
- W4309113432 hasPublicationYear "2022" @default.
- W4309113432 type Work @default.
- W4309113432 citedByCount "2" @default.
- W4309113432 countsByYear W43091134322023 @default.
- W4309113432 crossrefType "journal-article" @default.
- W4309113432 hasAuthorship W4309113432A5003642180 @default.
- W4309113432 hasAuthorship W4309113432A5009128337 @default.
- W4309113432 hasAuthorship W4309113432A5021541791 @default.
- W4309113432 hasAuthorship W4309113432A5027649946 @default.
- W4309113432 hasAuthorship W4309113432A5041289811 @default.
- W4309113432 hasAuthorship W4309113432A5042388548 @default.
- W4309113432 hasAuthorship W4309113432A5045121787 @default.
- W4309113432 hasAuthorship W4309113432A5055795755 @default.
- W4309113432 hasAuthorship W4309113432A5058576876 @default.
- W4309113432 hasAuthorship W4309113432A5068290213 @default.
- W4309113432 hasAuthorship W4309113432A5083142408 @default.
- W4309113432 hasAuthorship W4309113432A5084208504 @default.
- W4309113432 hasAuthorship W4309113432A5087207288 @default.
- W4309113432 hasBestOaLocation W43091134321 @default.
- W4309113432 hasConcept C112705442 @default.
- W4309113432 hasConcept C119857082 @default.
- W4309113432 hasConcept C154945302 @default.
- W4309113432 hasConcept C22979827 @default.
- W4309113432 hasConcept C2908647359 @default.
- W4309113432 hasConcept C41008148 @default.
- W4309113432 hasConcept C69366308 @default.
- W4309113432 hasConcept C71924100 @default.
- W4309113432 hasConcept C98274493 @default.
- W4309113432 hasConcept C99454951 @default.
- W4309113432 hasConceptScore W4309113432C112705442 @default.
- W4309113432 hasConceptScore W4309113432C119857082 @default.
- W4309113432 hasConceptScore W4309113432C154945302 @default.
- W4309113432 hasConceptScore W4309113432C22979827 @default.
- W4309113432 hasConceptScore W4309113432C2908647359 @default.
- W4309113432 hasConceptScore W4309113432C41008148 @default.
- W4309113432 hasConceptScore W4309113432C69366308 @default.
- W4309113432 hasConceptScore W4309113432C71924100 @default.
- W4309113432 hasConceptScore W4309113432C98274493 @default.
- W4309113432 hasConceptScore W4309113432C99454951 @default.
- W4309113432 hasFunder F4320321921 @default.
- W4309113432 hasFunder F4320326710 @default.
- W4309113432 hasLocation W43091134321 @default.