Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309118602> ?p ?o ?g. }
- W4309118602 endingPage "8818" @default.
- W4309118602 startingPage "8818" @default.
- W4309118602 abstract "Breast cancer is the type of cancer with the highest incidence and global mortality of female cancers. Thus, the adaptation of modern technologies that assist in medical diagnosis in order to accelerate, automate and reduce the subjectivity of this process are of paramount importance for an efficient treatment. Therefore, this work aims to propose a robust platform to compare and evaluate the proposed strategies for improving breast ultrasound images and compare them with state-of-the-art techniques by classifying them as benign, malignant and normal. Investigations were performed on a dataset containing a total of 780 images of tumor-affected persons, divided into benign, malignant and normal. A data augmentation technique was used to scale up the corpus of images available in the chosen dataset. For this, novel image enhancement techniques were used and the Multilayer Perceptrons, k-Nearest Neighbor and Support Vector Machines algorithms were used for classification. From the promising outcomes of the conducted experiments, it was observed that the bilateral algorithm together with the SVM classifier achieved the best result for the classification of breast cancer, with an overall accuracy of 96.69% and an accuracy for the detection of malignant nodules of 95.11%. Therefore, it was found that the application of image enhancement methods can help in the detection of breast cancer at a much earlier stage with better accuracy in detection." @default.
- W4309118602 created "2022-11-22" @default.
- W4309118602 creator A5012180559 @default.
- W4309118602 creator A5036483822 @default.
- W4309118602 creator A5045093520 @default.
- W4309118602 creator A5087663636 @default.
- W4309118602 date "2022-11-15" @default.
- W4309118602 modified "2023-10-13" @default.
- W4309118602 title "Mammogram Image Enhancement Techniques for Online Breast Cancer Detection and Diagnosis" @default.
- W4309118602 cites W2005089986 @default.
- W4309118602 cites W2086206452 @default.
- W4309118602 cites W2194775991 @default.
- W4309118602 cites W2522347965 @default.
- W4309118602 cites W2566376500 @default.
- W4309118602 cites W2793316858 @default.
- W4309118602 cites W2903434143 @default.
- W4309118602 cites W2907494301 @default.
- W4309118602 cites W2913895065 @default.
- W4309118602 cites W2918067976 @default.
- W4309118602 cites W2941859019 @default.
- W4309118602 cites W2945916124 @default.
- W4309118602 cites W2962962930 @default.
- W4309118602 cites W2963670497 @default.
- W4309118602 cites W2965342810 @default.
- W4309118602 cites W2972818365 @default.
- W4309118602 cites W2983322150 @default.
- W4309118602 cites W2986858483 @default.
- W4309118602 cites W2990848657 @default.
- W4309118602 cites W2991372685 @default.
- W4309118602 cites W3000252705 @default.
- W4309118602 cites W3006021292 @default.
- W4309118602 cites W3015130244 @default.
- W4309118602 cites W3033017622 @default.
- W4309118602 cites W3035731588 @default.
- W4309118602 cites W3042167738 @default.
- W4309118602 cites W3077664771 @default.
- W4309118602 cites W3095615238 @default.
- W4309118602 cites W3109680477 @default.
- W4309118602 cites W3126683905 @default.
- W4309118602 cites W3136200549 @default.
- W4309118602 cites W3157569538 @default.
- W4309118602 cites W3158966024 @default.
- W4309118602 cites W3169356981 @default.
- W4309118602 cites W3173590174 @default.
- W4309118602 cites W3189687660 @default.
- W4309118602 cites W3193690090 @default.
- W4309118602 cites W3198371726 @default.
- W4309118602 cites W3199076054 @default.
- W4309118602 cites W3199334903 @default.
- W4309118602 cites W3204515269 @default.
- W4309118602 cites W3215358640 @default.
- W4309118602 cites W3216051641 @default.
- W4309118602 cites W4200539020 @default.
- W4309118602 cites W4206134306 @default.
- W4309118602 cites W4206170787 @default.
- W4309118602 cites W4210514862 @default.
- W4309118602 cites W4211030014 @default.
- W4309118602 cites W4214881770 @default.
- W4309118602 cites W4221131980 @default.
- W4309118602 cites W4225415760 @default.
- W4309118602 cites W4229008968 @default.
- W4309118602 cites W4252224897 @default.
- W4309118602 cites W4281892775 @default.
- W4309118602 cites W4285317390 @default.
- W4309118602 cites W4290997165 @default.
- W4309118602 cites W4291910531 @default.
- W4309118602 cites W4293812423 @default.
- W4309118602 cites W4294975369 @default.
- W4309118602 cites W4298101909 @default.
- W4309118602 doi "https://doi.org/10.3390/s22228818" @default.
- W4309118602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36433415" @default.
- W4309118602 hasPublicationYear "2022" @default.
- W4309118602 type Work @default.
- W4309118602 citedByCount "4" @default.
- W4309118602 countsByYear W43091186022022 @default.
- W4309118602 countsByYear W43091186022023 @default.
- W4309118602 crossrefType "journal-article" @default.
- W4309118602 hasAuthorship W4309118602A5012180559 @default.
- W4309118602 hasAuthorship W4309118602A5036483822 @default.
- W4309118602 hasAuthorship W4309118602A5045093520 @default.
- W4309118602 hasAuthorship W4309118602A5087663636 @default.
- W4309118602 hasBestOaLocation W43091186021 @default.
- W4309118602 hasConcept C119857082 @default.
- W4309118602 hasConcept C121608353 @default.
- W4309118602 hasConcept C12267149 @default.
- W4309118602 hasConcept C126322002 @default.
- W4309118602 hasConcept C153180895 @default.
- W4309118602 hasConcept C154945302 @default.
- W4309118602 hasConcept C2780472235 @default.
- W4309118602 hasConcept C41008148 @default.
- W4309118602 hasConcept C50644808 @default.
- W4309118602 hasConcept C530470458 @default.
- W4309118602 hasConcept C60908668 @default.
- W4309118602 hasConcept C71924100 @default.
- W4309118602 hasConcept C95623464 @default.
- W4309118602 hasConceptScore W4309118602C119857082 @default.
- W4309118602 hasConceptScore W4309118602C121608353 @default.
- W4309118602 hasConceptScore W4309118602C12267149 @default.