Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309138810> ?p ?o ?g. }
- W4309138810 endingPage "e0277322" @default.
- W4309138810 startingPage "e0277322" @default.
- W4309138810 abstract "Alzheimer’s disease (AD) is a neurodegenerative condition that progresses over decades. Early detection of individuals at high risk of future progression toward AD is likely to be of critical significance for the successful treatment and/or prevention of this devastating disease. In this paper, we present an empirical study to characterize how predictable an individual subjects’ future AD trajectory is, several years in advance, based on rich multi-modal data, and using modern deep learning methods. Crucially, the machine learning strategy we propose can handle different future time horizons and can be trained with heterogeneous data that exhibit missingness and non-uniform follow-up visit times. Our experiments demonstrate that our strategy yields predictions that are more accurate than a model trained on a single time horizon (e.g. 3 years), which is common practice in prior literature. We also provide a comparison between linear and nonlinear models, verifying the well-established insight that the latter can offer a boost in performance. Our results also confirm that predicting future decline for cognitively normal (CN) individuals is more challenging than for individuals with mild cognitive impairment (MCI). Intriguingly, however, we discover that prediction accuracy decreases with increasing time horizon for CN subjects, but the trend is in the opposite direction for MCI subjects. Additionally, we quantify the contribution of different data types in prediction, which yields novel insights into the utility of different biomarkers. We find that molecular biomarkers are not as helpful for CN individuals as they are for MCI individuals, whereas magnetic resonance imaging biomarkers (hippocampus volume, specifically) offer a significant boost in prediction accuracy for CN individuals. Finally, we show how our model’s prediction reveals the evolution of individual-level progression risk over a five-year time horizon. Our code is available at https://github.com/batuhankmkaraman/mlbasedad ." @default.
- W4309138810 created "2022-11-23" @default.
- W4309138810 creator A5025901572 @default.
- W4309138810 creator A5049493284 @default.
- W4309138810 creator A5078734759 @default.
- W4309138810 date "2022-11-16" @default.
- W4309138810 modified "2023-09-30" @default.
- W4309138810 title "Machine learning based multi-modal prediction of future decline toward Alzheimer’s disease: An empirical study" @default.
- W4309138810 cites W1906409993 @default.
- W4309138810 cites W1976899564 @default.
- W4309138810 cites W1983355263 @default.
- W4309138810 cites W2004293194 @default.
- W4309138810 cites W2008152557 @default.
- W4309138810 cites W2018047120 @default.
- W4309138810 cites W2026525703 @default.
- W4309138810 cites W2035079822 @default.
- W4309138810 cites W2044614452 @default.
- W4309138810 cites W2051737015 @default.
- W4309138810 cites W2078524519 @default.
- W4309138810 cites W2079540265 @default.
- W4309138810 cites W2088391242 @default.
- W4309138810 cites W2101135654 @default.
- W4309138810 cites W2103481737 @default.
- W4309138810 cites W2105086806 @default.
- W4309138810 cites W2105991991 @default.
- W4309138810 cites W2110208125 @default.
- W4309138810 cites W2110412832 @default.
- W4309138810 cites W2110437310 @default.
- W4309138810 cites W2113319997 @default.
- W4309138810 cites W2115799070 @default.
- W4309138810 cites W2121369614 @default.
- W4309138810 cites W2123957845 @default.
- W4309138810 cites W2127324977 @default.
- W4309138810 cites W2129267808 @default.
- W4309138810 cites W2139886607 @default.
- W4309138810 cites W2151130155 @default.
- W4309138810 cites W2151721316 @default.
- W4309138810 cites W2153355613 @default.
- W4309138810 cites W2155963684 @default.
- W4309138810 cites W2156450079 @default.
- W4309138810 cites W2157270343 @default.
- W4309138810 cites W2157848968 @default.
- W4309138810 cites W2165840723 @default.
- W4309138810 cites W2168845544 @default.
- W4309138810 cites W2280317054 @default.
- W4309138810 cites W2512273414 @default.
- W4309138810 cites W2528250414 @default.
- W4309138810 cites W2566903824 @default.
- W4309138810 cites W2606546398 @default.
- W4309138810 cites W2626001339 @default.
- W4309138810 cites W2728134957 @default.
- W4309138810 cites W2790040701 @default.
- W4309138810 cites W2895292592 @default.
- W4309138810 cites W2900386946 @default.
- W4309138810 cites W2910576122 @default.
- W4309138810 cites W2960505072 @default.
- W4309138810 cites W2963423764 @default.
- W4309138810 cites W2973153742 @default.
- W4309138810 cites W3034690129 @default.
- W4309138810 cites W3074456252 @default.
- W4309138810 cites W3105848160 @default.
- W4309138810 cites W3110326519 @default.
- W4309138810 cites W3112948680 @default.
- W4309138810 cites W3130608143 @default.
- W4309138810 cites W3165128802 @default.
- W4309138810 cites W3202902530 @default.
- W4309138810 cites W4200556729 @default.
- W4309138810 doi "https://doi.org/10.1371/journal.pone.0277322" @default.
- W4309138810 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36383528" @default.
- W4309138810 hasPublicationYear "2022" @default.
- W4309138810 type Work @default.
- W4309138810 citedByCount "3" @default.
- W4309138810 countsByYear W43091388102023 @default.
- W4309138810 crossrefType "journal-article" @default.
- W4309138810 hasAuthorship W4309138810A5025901572 @default.
- W4309138810 hasAuthorship W4309138810A5049493284 @default.
- W4309138810 hasAuthorship W4309138810A5078734759 @default.
- W4309138810 hasBestOaLocation W43091388101 @default.
- W4309138810 hasConcept C105795698 @default.
- W4309138810 hasConcept C119857082 @default.
- W4309138810 hasConcept C120936955 @default.
- W4309138810 hasConcept C126255220 @default.
- W4309138810 hasConcept C126838900 @default.
- W4309138810 hasConcept C142724271 @default.
- W4309138810 hasConcept C143409427 @default.
- W4309138810 hasConcept C154945302 @default.
- W4309138810 hasConcept C15744967 @default.
- W4309138810 hasConcept C169760540 @default.
- W4309138810 hasConcept C169900460 @default.
- W4309138810 hasConcept C180747234 @default.
- W4309138810 hasConcept C2779134260 @default.
- W4309138810 hasConcept C28761237 @default.
- W4309138810 hasConcept C33923547 @default.
- W4309138810 hasConcept C41008148 @default.
- W4309138810 hasConcept C71924100 @default.
- W4309138810 hasConceptScore W4309138810C105795698 @default.
- W4309138810 hasConceptScore W4309138810C119857082 @default.
- W4309138810 hasConceptScore W4309138810C120936955 @default.