Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309144498> ?p ?o ?g. }
- W4309144498 endingPage "18" @default.
- W4309144498 startingPage "1" @default.
- W4309144498 abstract "The prognosis of skin cutaneous melanoma (SKCM) remains poor, and patients with SKCM show a poor response to immunotherapy. Thus, we aimed to identify necroptosis-related biomarkers, which can help predict the prognosis of SKCM and improve the effectiveness of precision medicine. Data of SKCM were obtained from The Cancer Genome Atlas (TCGA) and GEO databases. TCGA samples were classified into two clusters by consensus clustering of necroptosis-related genes. Univariate Cox and least absolute shrinkage and selection operator regression analyses led to the identification of 11 genes, which were used to construct a prognostic model. GSE65904 was used as the test set. Principal component, t-distributed stochastic neighbor embedding, and Kaplan–Meier survival analyses indicated that samples in the train and test sets could be divided into two groups, with the high-risk group showing a worse prognosis. Univariate and multivariate Cox regression analyses were performed, and a nomogram, calibration curve, and time-dependent receiver operating characteristic curve were constructed to verify the efficacy of our model. The 1-, 3-, and 5-year areas under the receiver operating characteristic curves for the train set were 0.702, 0.663, and 0.701 and for the test set were 0.613, 0.627, and 0.637, respectively. Moreover, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses between the high- and low-risk groups. Single sample gene set enrichment analysis, immune cell infiltration analysis, tumor microenvironment scores, immune checkpoint analysis, and half-maximal inhibitory concentration prediction indicated that the high-risk group showed weaker antitumor immunity; further, the response to immune checkpoint inhibitors was worse, and the high-risk group was sensitive to fewer antitumor drugs. Tumor mutational burden analysis, Kaplan–Meier survival analysis, and correlation analysis between risk score and RNA stemness score revealed that the high-risk group with low tumor mutational burden and high RNA stemness score was potentially associated with poor prognosis. To conclude, our model, which was based on 11 necroptosis-related genes, could predict the prognosis of SKCM; in addition, it has guiding significance for the selection of clinical treatment and provides new research directions to enhance necroptosis against SKCM." @default.
- W4309144498 created "2022-11-23" @default.
- W4309144498 creator A5014401976 @default.
- W4309144498 creator A5034328554 @default.
- W4309144498 creator A5045103009 @default.
- W4309144498 creator A5060641688 @default.
- W4309144498 date "2022-11-16" @default.
- W4309144498 modified "2023-09-25" @default.
- W4309144498 title "A Necroptosis-Related Gene Signature to Predict the Prognosis of Skin Cutaneous Melanoma" @default.
- W4309144498 cites W1993613360 @default.
- W4309144498 cites W2017390384 @default.
- W4309144498 cites W2029390954 @default.
- W4309144498 cites W2061234338 @default.
- W4309144498 cites W2068467835 @default.
- W4309144498 cites W2079696222 @default.
- W4309144498 cites W2100614336 @default.
- W4309144498 cites W2101703381 @default.
- W4309144498 cites W2117692326 @default.
- W4309144498 cites W2139552156 @default.
- W4309144498 cites W2140985136 @default.
- W4309144498 cites W2170822845 @default.
- W4309144498 cites W2314852662 @default.
- W4309144498 cites W2419144391 @default.
- W4309144498 cites W2560673920 @default.
- W4309144498 cites W2579586331 @default.
- W4309144498 cites W2789791103 @default.
- W4309144498 cites W2791962996 @default.
- W4309144498 cites W2888196187 @default.
- W4309144498 cites W2896725329 @default.
- W4309144498 cites W2900082702 @default.
- W4309144498 cites W2921627763 @default.
- W4309144498 cites W2943793201 @default.
- W4309144498 cites W2947880033 @default.
- W4309144498 cites W2949893954 @default.
- W4309144498 cites W2952065098 @default.
- W4309144498 cites W2959199542 @default.
- W4309144498 cites W2967805215 @default.
- W4309144498 cites W2986928599 @default.
- W4309144498 cites W2996089612 @default.
- W4309144498 cites W2996655167 @default.
- W4309144498 cites W2999774165 @default.
- W4309144498 cites W3037905349 @default.
- W4309144498 cites W3043942728 @default.
- W4309144498 cites W3048484045 @default.
- W4309144498 cites W3083486124 @default.
- W4309144498 cites W3092090171 @default.
- W4309144498 cites W3099522598 @default.
- W4309144498 cites W3119450539 @default.
- W4309144498 cites W3133219865 @default.
- W4309144498 cites W3167055638 @default.
- W4309144498 cites W3184037665 @default.
- W4309144498 cites W3194891619 @default.
- W4309144498 cites W3201381945 @default.
- W4309144498 cites W3207581726 @default.
- W4309144498 cites W3213735273 @default.
- W4309144498 cites W4200218440 @default.
- W4309144498 cites W4200474647 @default.
- W4309144498 cites W4210992847 @default.
- W4309144498 cites W4283837353 @default.
- W4309144498 doi "https://doi.org/10.1155/2022/8232024" @default.
- W4309144498 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36438905" @default.
- W4309144498 hasPublicationYear "2022" @default.
- W4309144498 type Work @default.
- W4309144498 citedByCount "0" @default.
- W4309144498 crossrefType "journal-article" @default.
- W4309144498 hasAuthorship W4309144498A5014401976 @default.
- W4309144498 hasAuthorship W4309144498A5034328554 @default.
- W4309144498 hasAuthorship W4309144498A5045103009 @default.
- W4309144498 hasAuthorship W4309144498A5060641688 @default.
- W4309144498 hasBestOaLocation W43091444981 @default.
- W4309144498 hasConcept C104317684 @default.
- W4309144498 hasConcept C10515644 @default.
- W4309144498 hasConcept C119857082 @default.
- W4309144498 hasConcept C126322002 @default.
- W4309144498 hasConcept C143998085 @default.
- W4309144498 hasConcept C150194340 @default.
- W4309144498 hasConcept C152724338 @default.
- W4309144498 hasConcept C161584116 @default.
- W4309144498 hasConcept C162317418 @default.
- W4309144498 hasConcept C199163554 @default.
- W4309144498 hasConcept C2777658100 @default.
- W4309144498 hasConcept C2779733811 @default.
- W4309144498 hasConcept C41008148 @default.
- W4309144498 hasConcept C502942594 @default.
- W4309144498 hasConcept C50382708 @default.
- W4309144498 hasConcept C54355233 @default.
- W4309144498 hasConcept C58471807 @default.
- W4309144498 hasConcept C70721500 @default.
- W4309144498 hasConcept C71924100 @default.
- W4309144498 hasConcept C86803240 @default.
- W4309144498 hasConceptScore W4309144498C104317684 @default.
- W4309144498 hasConceptScore W4309144498C10515644 @default.
- W4309144498 hasConceptScore W4309144498C119857082 @default.
- W4309144498 hasConceptScore W4309144498C126322002 @default.
- W4309144498 hasConceptScore W4309144498C143998085 @default.
- W4309144498 hasConceptScore W4309144498C150194340 @default.
- W4309144498 hasConceptScore W4309144498C152724338 @default.
- W4309144498 hasConceptScore W4309144498C161584116 @default.