Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309164930> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4309164930 endingPage "e34600" @default.
- W4309164930 startingPage "e34600" @default.
- W4309164930 abstract "Patients with early breast cancer undergoing primary surgery, who have low axillary nodal burden, can safely forego axillary node clearance (ANC). However, routine use of axillary ultrasound (AUS) leads to 43% of patients in this group having ANC unnecessarily, following a positive AUS. The intersection of machine learning with medicine can provide innovative ways to understand specific risks within large patient data sets, but this has not yet been trialed in the arena of axillary node management in breast cancer.The objective of this study was to assess if machine learning techniques could be used to improve preoperative identification of patients with low and high axillary metastatic burden.A single-center retrospective analysis was performed on patients with breast cancer who had a preoperative AUS, and the specificity and sensitivity of AUS were calculated. Standard statistical methods and machine learning methods, including artificial neural network, naive Bayes, support vector machine, and random forest, were applied to the data to see if they could improve the accuracy of preoperative AUS to better discern high and low axillary burden.The study included 459 patients; 142 (31%) had a positive AUS; among this group, 88 (62%) had 2 or fewer macrometastatic nodes at ANC. Logistic regression outperformed AUS (specificity 0.950 vs 0.809). Of all the methods, the artificial neural network had the highest accuracy (0.919). Interestingly, AUS had the highest sensitivity of all methods (0.777), underlining its utility in this setting.We demonstrated that machine learning improves identification of the important subgroup of patients with no palpable axillary disease, positive ultrasound, and more than 2 metastatically involved nodes. A negative ultrasound in patients with no palpable lymphadenopathy is highly indicative of low axillary burden, and it is unclear whether sentinel node biopsy adds value in this situation. Further studies with larger patient numbers focusing on specific breast cancer subgroups are required to refine these techniques in this setting." @default.
- W4309164930 created "2022-11-24" @default.
- W4309164930 creator A5010137065 @default.
- W4309164930 creator A5025095723 @default.
- W4309164930 creator A5039389569 @default.
- W4309164930 creator A5064634344 @default.
- W4309164930 creator A5081782998 @default.
- W4309164930 date "2022-11-15" @default.
- W4309164930 modified "2023-09-25" @default.
- W4309164930 title "The Use of Machine Learning to Reduce Overtreatment of the Axilla in Breast Cancer: Retrospective Cohort Study" @default.
- W4309164930 cites W1869868834 @default.
- W4309164930 cites W2012301405 @default.
- W4309164930 cites W2067420088 @default.
- W4309164930 cites W2079104090 @default.
- W4309164930 cites W2096785769 @default.
- W4309164930 cites W2114794378 @default.
- W4309164930 cites W2115527491 @default.
- W4309164930 cites W2172279718 @default.
- W4309164930 cites W2268087059 @default.
- W4309164930 cites W2740772745 @default.
- W4309164930 cites W2913997948 @default.
- W4309164930 cites W2946878452 @default.
- W4309164930 cites W3027747864 @default.
- W4309164930 cites W4200468526 @default.
- W4309164930 doi "https://doi.org/10.2196/34600" @default.
- W4309164930 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36378516" @default.
- W4309164930 hasPublicationYear "2022" @default.
- W4309164930 type Work @default.
- W4309164930 citedByCount "0" @default.
- W4309164930 crossrefType "journal-article" @default.
- W4309164930 hasAuthorship W4309164930A5010137065 @default.
- W4309164930 hasAuthorship W4309164930A5025095723 @default.
- W4309164930 hasAuthorship W4309164930A5039389569 @default.
- W4309164930 hasAuthorship W4309164930A5064634344 @default.
- W4309164930 hasAuthorship W4309164930A5081782998 @default.
- W4309164930 hasBestOaLocation W43091649301 @default.
- W4309164930 hasConcept C119857082 @default.
- W4309164930 hasConcept C121608353 @default.
- W4309164930 hasConcept C126322002 @default.
- W4309164930 hasConcept C126838900 @default.
- W4309164930 hasConcept C141071460 @default.
- W4309164930 hasConcept C151956035 @default.
- W4309164930 hasConcept C154945302 @default.
- W4309164930 hasConcept C167135981 @default.
- W4309164930 hasConcept C2776608951 @default.
- W4309164930 hasConcept C41008148 @default.
- W4309164930 hasConcept C50644808 @default.
- W4309164930 hasConcept C530470458 @default.
- W4309164930 hasConcept C71924100 @default.
- W4309164930 hasConcept C72563966 @default.
- W4309164930 hasConceptScore W4309164930C119857082 @default.
- W4309164930 hasConceptScore W4309164930C121608353 @default.
- W4309164930 hasConceptScore W4309164930C126322002 @default.
- W4309164930 hasConceptScore W4309164930C126838900 @default.
- W4309164930 hasConceptScore W4309164930C141071460 @default.
- W4309164930 hasConceptScore W4309164930C151956035 @default.
- W4309164930 hasConceptScore W4309164930C154945302 @default.
- W4309164930 hasConceptScore W4309164930C167135981 @default.
- W4309164930 hasConceptScore W4309164930C2776608951 @default.
- W4309164930 hasConceptScore W4309164930C41008148 @default.
- W4309164930 hasConceptScore W4309164930C50644808 @default.
- W4309164930 hasConceptScore W4309164930C530470458 @default.
- W4309164930 hasConceptScore W4309164930C71924100 @default.
- W4309164930 hasConceptScore W4309164930C72563966 @default.
- W4309164930 hasIssue "1" @default.
- W4309164930 hasLocation W43091649301 @default.
- W4309164930 hasLocation W43091649302 @default.
- W4309164930 hasLocation W43091649303 @default.
- W4309164930 hasOpenAccess W4309164930 @default.
- W4309164930 hasPrimaryLocation W43091649301 @default.
- W4309164930 hasRelatedWork W1586374228 @default.
- W4309164930 hasRelatedWork W2003938723 @default.
- W4309164930 hasRelatedWork W2047967234 @default.
- W4309164930 hasRelatedWork W2118496982 @default.
- W4309164930 hasRelatedWork W2364998975 @default.
- W4309164930 hasRelatedWork W2369162477 @default.
- W4309164930 hasRelatedWork W2439875401 @default.
- W4309164930 hasRelatedWork W2603773853 @default.
- W4309164930 hasRelatedWork W4238867864 @default.
- W4309164930 hasRelatedWork W2525756941 @default.
- W4309164930 hasVolume "5" @default.
- W4309164930 isParatext "false" @default.
- W4309164930 isRetracted "false" @default.
- W4309164930 workType "article" @default.