Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309166263> ?p ?o ?g. }
- W4309166263 endingPage "3302" @default.
- W4309166263 startingPage "3294" @default.
- W4309166263 abstract "Liquid water is all around us: at the beach, in a cloud, from a faucet, inside a spray tower, covering our lungs. It is fascinating to imagine what happens to a reactive gas molecule as it approaches the surface of water in these examples. Some incoming molecules may first be deflected away after colliding with an evaporating water molecule. Those that do strike surface H2O or other surface species may bounce directly off or become momentarily trapped through hydrogen bonding or other attractive forces. The adsorbed gas molecule can then desorb immediately or instead dissolve, passing through the interfacial region and into the bulk, perhaps diffusing back to the surface and evaporating before reacting. Alternatively, it may react with solute or water molecules in the interfacial or bulk regions, and a reaction intermediate or the final product may then desorb into the gas phase. Building a blow by blow picture of these pathways is challenging for vacuum-based techniques because of the high vapor pressure of water. In particular, collisions within the thick vapor cloud created by evaporating molecules just above the surface scramble the trajectories and internal states of the gaseous target molecules, hindering construction of gas-liquid reaction mechanisms at the atomic scale that we strive to map out.The introduction of the microjet in 1988 by Faubel, Schlemmer, and Toennies opened up entirely new possibilities. Their inspired solution seems so simple: narrow the end of a glass tube to a diameter smaller than the mean free path of the vapor molecules and then push the liquid through the tube at speeds of a car on a highway. The narrow liquid stream creates a sparse vapor cloud, with water molecules spaced far enough apart that they and the reactant gases interact, at most, weakly. Experimentalists, however, confront a host of challenges: nozzle clogging, unstable jetting, searching for vacuum-compatible solutions, measuring low signal levels, and teasing out artifacts because the slender jet is the smallest surface in the vacuum chamber. In this Account, we describe lessons that we are learning as we explore gases (DCl, (HCOOH)2, N2O5) reacting with water molecules and solute ions in the near-interfacial region of these fast-flowing aqueous microjets." @default.
- W4309166263 created "2022-11-24" @default.
- W4309166263 creator A5055821067 @default.
- W4309166263 creator A5087773450 @default.
- W4309166263 date "2022-11-15" @default.
- W4309166263 modified "2023-10-16" @default.
- W4309166263 title "Exploring Gas–Liquid Reactions with Microjets: Lessons We Are Learning" @default.
- W4309166263 cites W1443963143 @default.
- W4309166263 cites W1965296404 @default.
- W4309166263 cites W1969752528 @default.
- W4309166263 cites W1970556537 @default.
- W4309166263 cites W1978809458 @default.
- W4309166263 cites W1992383963 @default.
- W4309166263 cites W1995216342 @default.
- W4309166263 cites W2000022645 @default.
- W4309166263 cites W2004869781 @default.
- W4309166263 cites W2007888691 @default.
- W4309166263 cites W2018059648 @default.
- W4309166263 cites W2035616341 @default.
- W4309166263 cites W2039322371 @default.
- W4309166263 cites W2043459100 @default.
- W4309166263 cites W2049609012 @default.
- W4309166263 cites W2058068992 @default.
- W4309166263 cites W2065423888 @default.
- W4309166263 cites W2066424871 @default.
- W4309166263 cites W2072792031 @default.
- W4309166263 cites W2074718063 @default.
- W4309166263 cites W2077032287 @default.
- W4309166263 cites W2090023232 @default.
- W4309166263 cites W2093485847 @default.
- W4309166263 cites W2093900078 @default.
- W4309166263 cites W2117687006 @default.
- W4309166263 cites W2146946753 @default.
- W4309166263 cites W2155042308 @default.
- W4309166263 cites W2162073684 @default.
- W4309166263 cites W2272872634 @default.
- W4309166263 cites W2301583637 @default.
- W4309166263 cites W2322135041 @default.
- W4309166263 cites W2329061231 @default.
- W4309166263 cites W2333906293 @default.
- W4309166263 cites W2341559844 @default.
- W4309166263 cites W2342896988 @default.
- W4309166263 cites W2412541255 @default.
- W4309166263 cites W2602874166 @default.
- W4309166263 cites W2753058269 @default.
- W4309166263 cites W2804574479 @default.
- W4309166263 cites W2889013204 @default.
- W4309166263 cites W2913432856 @default.
- W4309166263 cites W2914080442 @default.
- W4309166263 cites W2955406639 @default.
- W4309166263 cites W3023786143 @default.
- W4309166263 cites W3036767490 @default.
- W4309166263 cites W3175520481 @default.
- W4309166263 cites W3209315739 @default.
- W4309166263 cites W4205742999 @default.
- W4309166263 cites W4225614895 @default.
- W4309166263 cites W4248869889 @default.
- W4309166263 cites W4280581825 @default.
- W4309166263 cites W4281906817 @default.
- W4309166263 cites W4286496177 @default.
- W4309166263 doi "https://doi.org/10.1021/acs.accounts.2c00602" @default.
- W4309166263 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36378763" @default.
- W4309166263 hasPublicationYear "2022" @default.
- W4309166263 type Work @default.
- W4309166263 citedByCount "2" @default.
- W4309166263 countsByYear W43091662632023 @default.
- W4309166263 crossrefType "journal-article" @default.
- W4309166263 hasAuthorship W4309166263A5055821067 @default.
- W4309166263 hasAuthorship W4309166263A5087773450 @default.
- W4309166263 hasConcept C127413603 @default.
- W4309166263 hasConcept C147176958 @default.
- W4309166263 hasConcept C147534773 @default.
- W4309166263 hasConcept C147789679 @default.
- W4309166263 hasConcept C150394285 @default.
- W4309166263 hasConcept C159467904 @default.
- W4309166263 hasConcept C162711632 @default.
- W4309166263 hasConcept C171250308 @default.
- W4309166263 hasConcept C178790620 @default.
- W4309166263 hasConcept C185592680 @default.
- W4309166263 hasConcept C192562407 @default.
- W4309166263 hasConcept C2777831296 @default.
- W4309166263 hasConcept C32909587 @default.
- W4309166263 hasConcept C512968161 @default.
- W4309166263 hasConceptScore W4309166263C127413603 @default.
- W4309166263 hasConceptScore W4309166263C147176958 @default.
- W4309166263 hasConceptScore W4309166263C147534773 @default.
- W4309166263 hasConceptScore W4309166263C147789679 @default.
- W4309166263 hasConceptScore W4309166263C150394285 @default.
- W4309166263 hasConceptScore W4309166263C159467904 @default.
- W4309166263 hasConceptScore W4309166263C162711632 @default.
- W4309166263 hasConceptScore W4309166263C171250308 @default.
- W4309166263 hasConceptScore W4309166263C178790620 @default.
- W4309166263 hasConceptScore W4309166263C185592680 @default.
- W4309166263 hasConceptScore W4309166263C192562407 @default.
- W4309166263 hasConceptScore W4309166263C2777831296 @default.
- W4309166263 hasConceptScore W4309166263C32909587 @default.
- W4309166263 hasConceptScore W4309166263C512968161 @default.
- W4309166263 hasFunder F4320306076 @default.