Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309173617> ?p ?o ?g. }
- W4309173617 abstract "In this paper, an element-based deep learning approach named DeepFEM for solving nonlinear partial differential equations (PDEs) in solid mechanics is developed to reduce the number of sampling points required for training the deep neural network. Shape functions are introduced into deep learning to approximate the displacement field within the element. A general scheme for training the deep neural network based on derivatives computed from the shape functions is proposed. For the sake of demonstrations, the nonlinear vibration, nonlinear bending, and cohesive fracture problems are solved, and the results are compared with those from the existing methods to evaluate the performance of the present method. The results demonstrate that DeepFEM can effectively approximate the solution of the nonlinear mechanics problems with high accuracy, while the shape functions can significantly improve the computational efficiency. Moreover, with the trained DeepFEM model, the solutions of nonlinear problems with different geometric or material properties can be obtained instantly without retraining. Finally, the proposed DeepFEM is employed in the identification of material parameters of composite plate. The results show that the longitudinal and transverse elastic moduli of the ply in the composite plates can be accurately predicted based on the nonlinear mechanical response of plates." @default.
- W4309173617 created "2022-11-24" @default.
- W4309173617 creator A5009985095 @default.
- W4309173617 creator A5041861493 @default.
- W4309173617 creator A5062177106 @default.
- W4309173617 creator A5080276547 @default.
- W4309173617 date "2023-02-01" @default.
- W4309173617 modified "2023-10-16" @default.
- W4309173617 title "DeepFEM: A Novel Element-Based Deep Learning Approach for Solving Nonlinear Partial Differential Equations in Computational Solid Mechanics" @default.
- W4309173617 cites W1963558900 @default.
- W4309173617 cites W1964523568 @default.
- W4309173617 cites W2008606552 @default.
- W4309173617 cites W2028939309 @default.
- W4309173617 cites W2038192252 @default.
- W4309173617 cites W2088892570 @default.
- W4309173617 cites W2132806267 @default.
- W4309173617 cites W2142136198 @default.
- W4309173617 cites W2155344405 @default.
- W4309173617 cites W2194775991 @default.
- W4309173617 cites W2261676784 @default.
- W4309173617 cites W2539182092 @default.
- W4309173617 cites W2539324467 @default.
- W4309173617 cites W2626934721 @default.
- W4309173617 cites W2753246113 @default.
- W4309173617 cites W2766447205 @default.
- W4309173617 cites W2788766513 @default.
- W4309173617 cites W2793169732 @default.
- W4309173617 cites W2803170602 @default.
- W4309173617 cites W2811799108 @default.
- W4309173617 cites W2890968382 @default.
- W4309173617 cites W2897923334 @default.
- W4309173617 cites W2898069542 @default.
- W4309173617 cites W2900369848 @default.
- W4309173617 cites W2901083887 @default.
- W4309173617 cites W2901474455 @default.
- W4309173617 cites W2908541468 @default.
- W4309173617 cites W2912649832 @default.
- W4309173617 cites W2919115771 @default.
- W4309173617 cites W2920968208 @default.
- W4309173617 cites W2938472310 @default.
- W4309173617 cites W2945420056 @default.
- W4309173617 cites W2946264706 @default.
- W4309173617 cites W2948230027 @default.
- W4309173617 cites W2951392159 @default.
- W4309173617 cites W2963716063 @default.
- W4309173617 cites W2997814214 @default.
- W4309173617 cites W2998366519 @default.
- W4309173617 cites W2998847955 @default.
- W4309173617 cites W3003922491 @default.
- W4309173617 cites W3012417314 @default.
- W4309173617 cites W3013482100 @default.
- W4309173617 cites W3014009018 @default.
- W4309173617 cites W3015812033 @default.
- W4309173617 cites W3015865829 @default.
- W4309173617 cites W3018966793 @default.
- W4309173617 cites W3025645353 @default.
- W4309173617 cites W3031879091 @default.
- W4309173617 cites W3084276559 @default.
- W4309173617 cites W3092020108 @default.
- W4309173617 cites W3096638577 @default.
- W4309173617 cites W3098546160 @default.
- W4309173617 cites W3099057226 @default.
- W4309173617 cites W3099849883 @default.
- W4309173617 cites W3103000616 @default.
- W4309173617 cites W3111914315 @default.
- W4309173617 cites W3120267840 @default.
- W4309173617 cites W3127451557 @default.
- W4309173617 cites W4221152086 @default.
- W4309173617 doi "https://doi.org/10.1061/jenmdt.emeng-6643" @default.
- W4309173617 hasPublicationYear "2023" @default.
- W4309173617 type Work @default.
- W4309173617 citedByCount "0" @default.
- W4309173617 crossrefType "journal-article" @default.
- W4309173617 hasAuthorship W4309173617A5009985095 @default.
- W4309173617 hasAuthorship W4309173617A5041861493 @default.
- W4309173617 hasAuthorship W4309173617A5062177106 @default.
- W4309173617 hasAuthorship W4309173617A5080276547 @default.
- W4309173617 hasConcept C121332964 @default.
- W4309173617 hasConcept C127413603 @default.
- W4309173617 hasConcept C134306372 @default.
- W4309173617 hasConcept C135628077 @default.
- W4309173617 hasConcept C154945302 @default.
- W4309173617 hasConcept C158622935 @default.
- W4309173617 hasConcept C159985019 @default.
- W4309173617 hasConcept C192562407 @default.
- W4309173617 hasConcept C28826006 @default.
- W4309173617 hasConcept C33923547 @default.
- W4309173617 hasConcept C41008148 @default.
- W4309173617 hasConcept C500666722 @default.
- W4309173617 hasConcept C50644808 @default.
- W4309173617 hasConcept C62520636 @default.
- W4309173617 hasConcept C66938386 @default.
- W4309173617 hasConcept C93779851 @default.
- W4309173617 hasConceptScore W4309173617C121332964 @default.
- W4309173617 hasConceptScore W4309173617C127413603 @default.
- W4309173617 hasConceptScore W4309173617C134306372 @default.
- W4309173617 hasConceptScore W4309173617C135628077 @default.
- W4309173617 hasConceptScore W4309173617C154945302 @default.
- W4309173617 hasConceptScore W4309173617C158622935 @default.
- W4309173617 hasConceptScore W4309173617C159985019 @default.