Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309187824> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4309187824 abstract "Abstract Machine learning is one of the widely used techniques to pattern recognition. Use of the machine learning tools is becoming a more accessible approach for predictive model development in preventing engineering disaster. The objective of the research is to for estimation of water source using the machine learning tools. Random forest classification is a popular machine learning method for developing prediction models in many research settings. The type of mine water in the Pingdingshan coalfield is classified into surface water, Quaternary pore water, Carboniferous limestone karst water, Permian sandstone water, and Cambrian limestone karst water. Each type of water is encoded with the number 0–4. On the basis of hydrochemical data processing, a random forests model is designed and trained with the hydrochemical data. With respect to the predictive accuracy and robustness, fourfold cross-validation (CV) is adopted for the model training. The results show that the random forests model presented here provides significant guidance for the discrimination of mine water." @default.
- W4309187824 created "2022-11-24" @default.
- W4309187824 creator A5040523461 @default.
- W4309187824 creator A5074589469 @default.
- W4309187824 creator A5075938156 @default.
- W4309187824 creator A5084145889 @default.
- W4309187824 date "2022-11-15" @default.
- W4309187824 modified "2023-09-30" @default.
- W4309187824 title "Source discrimination of mine water based on the random forest method" @default.
- W4309187824 cites W1919154490 @default.
- W4309187824 cites W1936750108 @default.
- W4309187824 cites W1944366699 @default.
- W4309187824 cites W2045869218 @default.
- W4309187824 cites W2088338354 @default.
- W4309187824 cites W2301610011 @default.
- W4309187824 cites W2344924572 @default.
- W4309187824 cites W2501530193 @default.
- W4309187824 cites W2612940976 @default.
- W4309187824 cites W275199079 @default.
- W4309187824 cites W2767635970 @default.
- W4309187824 cites W2885441463 @default.
- W4309187824 cites W2913323966 @default.
- W4309187824 cites W2919115771 @default.
- W4309187824 cites W2920641855 @default.
- W4309187824 cites W2921321912 @default.
- W4309187824 cites W2978368159 @default.
- W4309187824 cites W2996991292 @default.
- W4309187824 cites W3013498854 @default.
- W4309187824 cites W3120927300 @default.
- W4309187824 cites W3211006090 @default.
- W4309187824 doi "https://doi.org/10.1038/s41598-022-24037-4" @default.
- W4309187824 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36379979" @default.
- W4309187824 hasPublicationYear "2022" @default.
- W4309187824 type Work @default.
- W4309187824 citedByCount "1" @default.
- W4309187824 countsByYear W43091878242023 @default.
- W4309187824 crossrefType "journal-article" @default.
- W4309187824 hasAuthorship W4309187824A5040523461 @default.
- W4309187824 hasAuthorship W4309187824A5074589469 @default.
- W4309187824 hasAuthorship W4309187824A5075938156 @default.
- W4309187824 hasAuthorship W4309187824A5084145889 @default.
- W4309187824 hasBestOaLocation W43091878241 @default.
- W4309187824 hasConcept C104317684 @default.
- W4309187824 hasConcept C119857082 @default.
- W4309187824 hasConcept C127313418 @default.
- W4309187824 hasConcept C151730666 @default.
- W4309187824 hasConcept C154945302 @default.
- W4309187824 hasConcept C169258074 @default.
- W4309187824 hasConcept C182348080 @default.
- W4309187824 hasConcept C185592680 @default.
- W4309187824 hasConcept C187320778 @default.
- W4309187824 hasConcept C41008148 @default.
- W4309187824 hasConcept C55493867 @default.
- W4309187824 hasConcept C63479239 @default.
- W4309187824 hasConcept C76886044 @default.
- W4309187824 hasConceptScore W4309187824C104317684 @default.
- W4309187824 hasConceptScore W4309187824C119857082 @default.
- W4309187824 hasConceptScore W4309187824C127313418 @default.
- W4309187824 hasConceptScore W4309187824C151730666 @default.
- W4309187824 hasConceptScore W4309187824C154945302 @default.
- W4309187824 hasConceptScore W4309187824C169258074 @default.
- W4309187824 hasConceptScore W4309187824C182348080 @default.
- W4309187824 hasConceptScore W4309187824C185592680 @default.
- W4309187824 hasConceptScore W4309187824C187320778 @default.
- W4309187824 hasConceptScore W4309187824C41008148 @default.
- W4309187824 hasConceptScore W4309187824C55493867 @default.
- W4309187824 hasConceptScore W4309187824C63479239 @default.
- W4309187824 hasConceptScore W4309187824C76886044 @default.
- W4309187824 hasFunder F4320321001 @default.
- W4309187824 hasFunder F4320323845 @default.
- W4309187824 hasIssue "1" @default.
- W4309187824 hasLocation W43091878241 @default.
- W4309187824 hasLocation W43091878242 @default.
- W4309187824 hasLocation W43091878243 @default.
- W4309187824 hasOpenAccess W4309187824 @default.
- W4309187824 hasPrimaryLocation W43091878241 @default.
- W4309187824 hasRelatedWork W2911455822 @default.
- W4309187824 hasRelatedWork W3018959556 @default.
- W4309187824 hasRelatedWork W3174196512 @default.
- W4309187824 hasRelatedWork W3211546796 @default.
- W4309187824 hasRelatedWork W4281560664 @default.
- W4309187824 hasRelatedWork W4281616679 @default.
- W4309187824 hasRelatedWork W4293525103 @default.
- W4309187824 hasRelatedWork W4308191010 @default.
- W4309187824 hasRelatedWork W4318350883 @default.
- W4309187824 hasRelatedWork W4323021782 @default.
- W4309187824 hasVolume "12" @default.
- W4309187824 isParatext "false" @default.
- W4309187824 isRetracted "false" @default.
- W4309187824 workType "article" @default.