Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309190714> ?p ?o ?g. }
- W4309190714 endingPage "122160" @default.
- W4309190714 startingPage "122160" @default.
- W4309190714 abstract "Identifying technologies is a key element for mapping a domain and its evolution. It allows managers and decision makers to anticipate trends for an accurate forecast and effective foresight. Researchers and practitioners are taking advantage of the rapid growth of the publicly accessible sources to map technological domains. Among these sources, patents are the widest technical open access database used in the literature and in practice. Nowadays, Natural Language Processing (NLP) techniques enable new methods for the analysis of patent texts. Among these techniques, in this paper we explore the use of Named Entity Recognition (NER) with the purpose to identify the technologies mentioned in patents' text. We compare three different NER methods, gazetteer-based, rule-based and deep learning-based (e.g. BERT), measuring their performances in terms of precision, recall and computational time. We test the approaches on 1600 patents from four assorted IPC classes as case studies. Our NER systems collected over 4500 fine-grained technologies, achieving the best results thanks to the combination of the three methodologies. The proposed method overcomes the literature thanks to the ability to filter generic technological terms. Our study delineates a valid technology identification tool that can be integrated in any text analysis pipeline to support academics and companies in investigating a technological domain. • Leveraging patents as a valuable data source for technology identification • A text mining method enabling the technological Named Entity Recognition (NER) • 4500 fine-grained technologies collected over 1600 patents • An approach to support accurate forecasting and effective foresight" @default.
- W4309190714 created "2022-11-24" @default.
- W4309190714 creator A5028263343 @default.
- W4309190714 creator A5045636436 @default.
- W4309190714 creator A5053445177 @default.
- W4309190714 creator A5062279114 @default.
- W4309190714 creator A5066761209 @default.
- W4309190714 date "2023-01-01" @default.
- W4309190714 modified "2023-10-17" @default.
- W4309190714 title "Technology identification from patent texts: A novel named entity recognition method" @default.
- W4309190714 cites W1540816673 @default.
- W4309190714 cites W1747861911 @default.
- W4309190714 cites W1973867393 @default.
- W4309190714 cites W1974148689 @default.
- W4309190714 cites W1974225033 @default.
- W4309190714 cites W1975879668 @default.
- W4309190714 cites W1979285209 @default.
- W4309190714 cites W1992760964 @default.
- W4309190714 cites W2007275787 @default.
- W4309190714 cites W2013958462 @default.
- W4309190714 cites W2015009797 @default.
- W4309190714 cites W2020278455 @default.
- W4309190714 cites W2021631543 @default.
- W4309190714 cites W2021936066 @default.
- W4309190714 cites W2025701878 @default.
- W4309190714 cites W2043833768 @default.
- W4309190714 cites W2044764121 @default.
- W4309190714 cites W2050194858 @default.
- W4309190714 cites W2050467251 @default.
- W4309190714 cites W2052371873 @default.
- W4309190714 cites W2056649650 @default.
- W4309190714 cites W2062418945 @default.
- W4309190714 cites W2068632118 @default.
- W4309190714 cites W2074233694 @default.
- W4309190714 cites W2084565607 @default.
- W4309190714 cites W2087169815 @default.
- W4309190714 cites W2106116881 @default.
- W4309190714 cites W2107435951 @default.
- W4309190714 cites W2111852903 @default.
- W4309190714 cites W2115902133 @default.
- W4309190714 cites W2118347738 @default.
- W4309190714 cites W2125184362 @default.
- W4309190714 cites W2126636363 @default.
- W4309190714 cites W2144836956 @default.
- W4309190714 cites W2152794177 @default.
- W4309190714 cites W2157975090 @default.
- W4309190714 cites W2260466180 @default.
- W4309190714 cites W2289642105 @default.
- W4309190714 cites W2520981676 @default.
- W4309190714 cites W2526781987 @default.
- W4309190714 cites W2528605693 @default.
- W4309190714 cites W2544040176 @default.
- W4309190714 cites W2552664943 @default.
- W4309190714 cites W2567027826 @default.
- W4309190714 cites W2591829922 @default.
- W4309190714 cites W2598885431 @default.
- W4309190714 cites W2618134825 @default.
- W4309190714 cites W2747878338 @default.
- W4309190714 cites W2766378885 @default.
- W4309190714 cites W2767739039 @default.
- W4309190714 cites W2786834935 @default.
- W4309190714 cites W2799297936 @default.
- W4309190714 cites W2804640380 @default.
- W4309190714 cites W2811393141 @default.
- W4309190714 cites W2886295505 @default.
- W4309190714 cites W2886735965 @default.
- W4309190714 cites W2888532066 @default.
- W4309190714 cites W2889961245 @default.
- W4309190714 cites W2921088878 @default.
- W4309190714 cites W2939242297 @default.
- W4309190714 cites W2952371693 @default.
- W4309190714 cites W2979023429 @default.
- W4309190714 cites W2983594740 @default.
- W4309190714 cites W2998997307 @default.
- W4309190714 cites W3002882006 @default.
- W4309190714 cites W3003690520 @default.
- W4309190714 cites W3010949373 @default.
- W4309190714 cites W3014279233 @default.
- W4309190714 cites W3034156543 @default.
- W4309190714 cites W3039357447 @default.
- W4309190714 cites W3082149889 @default.
- W4309190714 cites W3088999110 @default.
- W4309190714 cites W3090306696 @default.
- W4309190714 cites W3095837292 @default.
- W4309190714 cites W3113508771 @default.
- W4309190714 cites W3124680412 @default.
- W4309190714 cites W3163160942 @default.
- W4309190714 cites W4200455899 @default.
- W4309190714 cites W4211202729 @default.
- W4309190714 cites W4236137412 @default.
- W4309190714 cites W4294214797 @default.
- W4309190714 doi "https://doi.org/10.1016/j.techfore.2022.122160" @default.
- W4309190714 hasPublicationYear "2023" @default.
- W4309190714 type Work @default.
- W4309190714 citedByCount "5" @default.
- W4309190714 countsByYear W43091907142023 @default.
- W4309190714 crossrefType "journal-article" @default.
- W4309190714 hasAuthorship W4309190714A5028263343 @default.