Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309191560> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4309191560 endingPage "9" @default.
- W4309191560 startingPage "1" @default.
- W4309191560 abstract "An exact and quick finding of Covid-19 patients plays a major part in the initial period of medicinal treatment and prevention. Automatic recognition of COVID-19 cases utilizing lung X-ray images may help lessen the effect of this infection on human civilization. In recent years, computer vision is the major solution for diagnosing the covid-19 disease by utilizing X-ray images. Besides, many researchers had presented efficient Artificial Intelligence (AI)methods for identifying Covid-19 disease. Nevertheless, the accuracy and time consumption of the model is further to be improved. Thus, in this work, we proposed a novel Xception network with an optimized convolution neural network (OCNN). The CNN architecture is enhanced by using the adaptive seagull optimization (ASO) algorithm. There are three stages of the approach: pre-processing, feature extraction, and classification. At first, a median filter is applied to each image to reduce the noise present in the input image. Then, the noise-free images are fed to the Xception network to extract the features of the images. A convolution network is used to classify an image as positive or negative after feature extraction. The performance of the proposed approach is analyzed based on various metrics and performance compared with other techniques." @default.
- W4309191560 created "2022-11-24" @default.
- W4309191560 creator A5020404206 @default.
- W4309191560 creator A5081007308 @default.
- W4309191560 date "2022-11-14" @default.
- W4309191560 modified "2023-09-26" @default.
- W4309191560 title "Automatic Detection of Covid-19 based on Xception Network with Optimized CNN" @default.
- W4309191560 cites W3037538421 @default.
- W4309191560 cites W3038780555 @default.
- W4309191560 cites W3040299034 @default.
- W4309191560 cites W3042070269 @default.
- W4309191560 cites W3048917786 @default.
- W4309191560 cites W3113195410 @default.
- W4309191560 cites W3117253464 @default.
- W4309191560 cites W3118454707 @default.
- W4309191560 cites W3118982336 @default.
- W4309191560 cites W3119631283 @default.
- W4309191560 cites W3140924497 @default.
- W4309191560 cites W3159001838 @default.
- W4309191560 cites W3162351260 @default.
- W4309191560 cites W3164091667 @default.
- W4309191560 cites W3178226228 @default.
- W4309191560 doi "https://doi.org/10.1080/03772063.2022.2138583" @default.
- W4309191560 hasPublicationYear "2022" @default.
- W4309191560 type Work @default.
- W4309191560 citedByCount "0" @default.
- W4309191560 crossrefType "journal-article" @default.
- W4309191560 hasAuthorship W4309191560A5020404206 @default.
- W4309191560 hasAuthorship W4309191560A5081007308 @default.
- W4309191560 hasConcept C106131492 @default.
- W4309191560 hasConcept C115961682 @default.
- W4309191560 hasConcept C138885662 @default.
- W4309191560 hasConcept C142724271 @default.
- W4309191560 hasConcept C153180895 @default.
- W4309191560 hasConcept C154945302 @default.
- W4309191560 hasConcept C2776401178 @default.
- W4309191560 hasConcept C2779134260 @default.
- W4309191560 hasConcept C3008058167 @default.
- W4309191560 hasConcept C31972630 @default.
- W4309191560 hasConcept C41008148 @default.
- W4309191560 hasConcept C41895202 @default.
- W4309191560 hasConcept C45347329 @default.
- W4309191560 hasConcept C50644808 @default.
- W4309191560 hasConcept C524204448 @default.
- W4309191560 hasConcept C52622490 @default.
- W4309191560 hasConcept C71924100 @default.
- W4309191560 hasConcept C81363708 @default.
- W4309191560 hasConcept C9417928 @default.
- W4309191560 hasConcept C99498987 @default.
- W4309191560 hasConceptScore W4309191560C106131492 @default.
- W4309191560 hasConceptScore W4309191560C115961682 @default.
- W4309191560 hasConceptScore W4309191560C138885662 @default.
- W4309191560 hasConceptScore W4309191560C142724271 @default.
- W4309191560 hasConceptScore W4309191560C153180895 @default.
- W4309191560 hasConceptScore W4309191560C154945302 @default.
- W4309191560 hasConceptScore W4309191560C2776401178 @default.
- W4309191560 hasConceptScore W4309191560C2779134260 @default.
- W4309191560 hasConceptScore W4309191560C3008058167 @default.
- W4309191560 hasConceptScore W4309191560C31972630 @default.
- W4309191560 hasConceptScore W4309191560C41008148 @default.
- W4309191560 hasConceptScore W4309191560C41895202 @default.
- W4309191560 hasConceptScore W4309191560C45347329 @default.
- W4309191560 hasConceptScore W4309191560C50644808 @default.
- W4309191560 hasConceptScore W4309191560C524204448 @default.
- W4309191560 hasConceptScore W4309191560C52622490 @default.
- W4309191560 hasConceptScore W4309191560C71924100 @default.
- W4309191560 hasConceptScore W4309191560C81363708 @default.
- W4309191560 hasConceptScore W4309191560C9417928 @default.
- W4309191560 hasConceptScore W4309191560C99498987 @default.
- W4309191560 hasLocation W43091915601 @default.
- W4309191560 hasOpenAccess W4309191560 @default.
- W4309191560 hasPrimaryLocation W43091915601 @default.
- W4309191560 hasRelatedWork W2059299633 @default.
- W4309191560 hasRelatedWork W2295021132 @default.
- W4309191560 hasRelatedWork W2546942002 @default.
- W4309191560 hasRelatedWork W2732542196 @default.
- W4309191560 hasRelatedWork W2760085659 @default.
- W4309191560 hasRelatedWork W2940977206 @default.
- W4309191560 hasRelatedWork W2969680539 @default.
- W4309191560 hasRelatedWork W2977314777 @default.
- W4309191560 hasRelatedWork W2995914718 @default.
- W4309191560 hasRelatedWork W3156786002 @default.
- W4309191560 isParatext "false" @default.
- W4309191560 isRetracted "false" @default.
- W4309191560 workType "article" @default.