Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309193103> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4309193103 endingPage "102297" @default.
- W4309193103 startingPage "102297" @default.
- W4309193103 abstract "The extreme value analysis of the ice accretion thickness can be carried out based on the peaks-over-threshold (POT) approach to take advantage of the available rare samples in assessing the ice accretion thickness hazard. For the POT approach, the generalized Pareto distribution (GPD) with location, scale, and shape parameters has been frequently employed, although the estimators of parameters of GPD by using existing fitting methods could be associated with significant bias or variability. In the present study, we propose a new nonlinear least-squares fitting method by considering the expected order statistics. We compare its performance with some existing methods through simulation analysis, showing that the proposed method outperforms some well-known existing methods for a range of values of the shape parameter. We then apply the POT approach with GPD as well as the block maximum approach with Gumbel distribution to estimate T-year return period value of the annual maximum ice accretion thickness, xT, for Canadian sites. The analysis results indicate that xT is sensitive to whether the POT or the annual maximum approach with Gumbel distribution is employed. For the considered cases, the use of GPD fitted to POT values is preferred. Also, based on the wind-on-ice analysis results, it is suggested a companion wind load factor of about 0.5 to 0.55 could be adopted." @default.
- W4309193103 created "2022-11-24" @default.
- W4309193103 creator A5046202346 @default.
- W4309193103 creator A5057083614 @default.
- W4309193103 creator A5065137955 @default.
- W4309193103 date "2023-03-01" @default.
- W4309193103 modified "2023-09-27" @default.
- W4309193103 title "Fitting generalized Pareto distribution based on the expected order statistics and its application for ice accretion hazard mapping" @default.
- W4309193103 cites W1500657154 @default.
- W4309193103 cites W1868178162 @default.
- W4309193103 cites W1971009854 @default.
- W4309193103 cites W1980728011 @default.
- W4309193103 cites W2003503483 @default.
- W4309193103 cites W2019387816 @default.
- W4309193103 cites W2020095886 @default.
- W4309193103 cites W2020498271 @default.
- W4309193103 cites W2025226153 @default.
- W4309193103 cites W2026039457 @default.
- W4309193103 cites W2034876089 @default.
- W4309193103 cites W2042166835 @default.
- W4309193103 cites W2045544414 @default.
- W4309193103 cites W2051427288 @default.
- W4309193103 cites W2065112092 @default.
- W4309193103 cites W2067003364 @default.
- W4309193103 cites W2077811884 @default.
- W4309193103 cites W2088514898 @default.
- W4309193103 cites W2091626264 @default.
- W4309193103 cites W2094177174 @default.
- W4309193103 cites W2130388432 @default.
- W4309193103 cites W2153671271 @default.
- W4309193103 cites W2170591039 @default.
- W4309193103 cites W2180970328 @default.
- W4309193103 cites W2299491330 @default.
- W4309193103 cites W2408008193 @default.
- W4309193103 cites W2906604322 @default.
- W4309193103 cites W3021426211 @default.
- W4309193103 cites W3025151364 @default.
- W4309193103 cites W3194246292 @default.
- W4309193103 cites W4236353642 @default.
- W4309193103 cites W4248705221 @default.
- W4309193103 doi "https://doi.org/10.1016/j.strusafe.2022.102297" @default.
- W4309193103 hasPublicationYear "2023" @default.
- W4309193103 type Work @default.
- W4309193103 citedByCount "0" @default.
- W4309193103 crossrefType "journal-article" @default.
- W4309193103 hasAuthorship W4309193103A5046202346 @default.
- W4309193103 hasAuthorship W4309193103A5057083614 @default.
- W4309193103 hasAuthorship W4309193103A5065137955 @default.
- W4309193103 hasConcept C105795698 @default.
- W4309193103 hasConcept C127413603 @default.
- W4309193103 hasConcept C133514767 @default.
- W4309193103 hasConcept C137610916 @default.
- W4309193103 hasConcept C146978453 @default.
- W4309193103 hasConcept C147581598 @default.
- W4309193103 hasConcept C185429906 @default.
- W4309193103 hasConcept C190373308 @default.
- W4309193103 hasConcept C199435849 @default.
- W4309193103 hasConcept C204323151 @default.
- W4309193103 hasConcept C33923547 @default.
- W4309193103 hasConcept C91716921 @default.
- W4309193103 hasConceptScore W4309193103C105795698 @default.
- W4309193103 hasConceptScore W4309193103C127413603 @default.
- W4309193103 hasConceptScore W4309193103C133514767 @default.
- W4309193103 hasConceptScore W4309193103C137610916 @default.
- W4309193103 hasConceptScore W4309193103C146978453 @default.
- W4309193103 hasConceptScore W4309193103C147581598 @default.
- W4309193103 hasConceptScore W4309193103C185429906 @default.
- W4309193103 hasConceptScore W4309193103C190373308 @default.
- W4309193103 hasConceptScore W4309193103C199435849 @default.
- W4309193103 hasConceptScore W4309193103C204323151 @default.
- W4309193103 hasConceptScore W4309193103C33923547 @default.
- W4309193103 hasConceptScore W4309193103C91716921 @default.
- W4309193103 hasFunder F4320322601 @default.
- W4309193103 hasFunder F4320322725 @default.
- W4309193103 hasFunder F4320334593 @default.
- W4309193103 hasLocation W43091931031 @default.
- W4309193103 hasOpenAccess W4309193103 @default.
- W4309193103 hasPrimaryLocation W43091931031 @default.
- W4309193103 hasRelatedWork W2032411839 @default.
- W4309193103 hasRelatedWork W2048185457 @default.
- W4309193103 hasRelatedWork W2065098330 @default.
- W4309193103 hasRelatedWork W2403785368 @default.
- W4309193103 hasRelatedWork W2472237270 @default.
- W4309193103 hasRelatedWork W2757898056 @default.
- W4309193103 hasRelatedWork W2775024348 @default.
- W4309193103 hasRelatedWork W2904220494 @default.
- W4309193103 hasRelatedWork W293883132 @default.
- W4309193103 hasRelatedWork W3129181198 @default.
- W4309193103 hasVolume "101" @default.
- W4309193103 isParatext "false" @default.
- W4309193103 isRetracted "false" @default.
- W4309193103 workType "article" @default.