Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309197175> ?p ?o ?g. }
- W4309197175 endingPage "681" @default.
- W4309197175 startingPage "666" @default.
- W4309197175 abstract "Abstract Deep learning has achieved noteworthy success in various applications. There is a new trend of adopting deep learning methods to study partial differential equations (PDEs). In this article, we use a kind of parallel deep neural networks (PDNNs) to approximate the solution of the Navier–Stokes equations coupled with the heat equation. The approach embeds the PDE formula into the loss function of the neural networks and the resulting networks is trained to meet the equations along with the boundary conditions. Moreover, the approximate ability of the PDNNs is demonstrated by the theoretical analysis of convergence. Finally, we present numerous numerical examples to verify effectiveness of the PDNNs, in which the viscosity is a constant, a function dependent on the space variable and a function of the temperature ." @default.
- W4309197175 created "2022-11-24" @default.
- W4309197175 creator A5017660667 @default.
- W4309197175 creator A5078949281 @default.
- W4309197175 date "2022-11-28" @default.
- W4309197175 modified "2023-09-26" @default.
- W4309197175 title "PDNNs: The parallel deep neural networks for the Navier–Stokes equations coupled with heat equation" @default.
- W4309197175 cites W1967607898 @default.
- W4309197175 cites W1977292054 @default.
- W4309197175 cites W1985262947 @default.
- W4309197175 cites W1988115241 @default.
- W4309197175 cites W2039641837 @default.
- W4309197175 cites W2070347759 @default.
- W4309197175 cites W2103496339 @default.
- W4309197175 cites W2140671646 @default.
- W4309197175 cites W2148666448 @default.
- W4309197175 cites W2164090329 @default.
- W4309197175 cites W2550848904 @default.
- W4309197175 cites W2749028154 @default.
- W4309197175 cites W2759992807 @default.
- W4309197175 cites W2766447205 @default.
- W4309197175 cites W2770250658 @default.
- W4309197175 cites W2770422933 @default.
- W4309197175 cites W2803629276 @default.
- W4309197175 cites W2899283552 @default.
- W4309197175 cites W2919115771 @default.
- W4309197175 cites W2969381807 @default.
- W4309197175 cites W3011190975 @default.
- W4309197175 cites W3014009018 @default.
- W4309197175 cites W3016378723 @default.
- W4309197175 cites W3041682155 @default.
- W4309197175 cites W3088619209 @default.
- W4309197175 cites W3205265842 @default.
- W4309197175 cites W4224022852 @default.
- W4309197175 cites W4296116669 @default.
- W4309197175 doi "https://doi.org/10.1002/fld.5164" @default.
- W4309197175 hasPublicationYear "2022" @default.
- W4309197175 type Work @default.
- W4309197175 citedByCount "1" @default.
- W4309197175 countsByYear W43091971752023 @default.
- W4309197175 crossrefType "journal-article" @default.
- W4309197175 hasAuthorship W4309197175A5017660667 @default.
- W4309197175 hasAuthorship W4309197175A5078949281 @default.
- W4309197175 hasConcept C108583219 @default.
- W4309197175 hasConcept C121332964 @default.
- W4309197175 hasConcept C134306372 @default.
- W4309197175 hasConcept C14036430 @default.
- W4309197175 hasConcept C142730499 @default.
- W4309197175 hasConcept C154945302 @default.
- W4309197175 hasConcept C162324750 @default.
- W4309197175 hasConcept C182310444 @default.
- W4309197175 hasConcept C182365436 @default.
- W4309197175 hasConcept C199360897 @default.
- W4309197175 hasConcept C202787564 @default.
- W4309197175 hasConcept C2777027219 @default.
- W4309197175 hasConcept C2777303404 @default.
- W4309197175 hasConcept C2781278361 @default.
- W4309197175 hasConcept C28826006 @default.
- W4309197175 hasConcept C33923547 @default.
- W4309197175 hasConcept C41008148 @default.
- W4309197175 hasConcept C50522688 @default.
- W4309197175 hasConcept C50644808 @default.
- W4309197175 hasConcept C57879066 @default.
- W4309197175 hasConcept C78458016 @default.
- W4309197175 hasConcept C84655787 @default.
- W4309197175 hasConcept C86803240 @default.
- W4309197175 hasConcept C93779851 @default.
- W4309197175 hasConceptScore W4309197175C108583219 @default.
- W4309197175 hasConceptScore W4309197175C121332964 @default.
- W4309197175 hasConceptScore W4309197175C134306372 @default.
- W4309197175 hasConceptScore W4309197175C14036430 @default.
- W4309197175 hasConceptScore W4309197175C142730499 @default.
- W4309197175 hasConceptScore W4309197175C154945302 @default.
- W4309197175 hasConceptScore W4309197175C162324750 @default.
- W4309197175 hasConceptScore W4309197175C182310444 @default.
- W4309197175 hasConceptScore W4309197175C182365436 @default.
- W4309197175 hasConceptScore W4309197175C199360897 @default.
- W4309197175 hasConceptScore W4309197175C202787564 @default.
- W4309197175 hasConceptScore W4309197175C2777027219 @default.
- W4309197175 hasConceptScore W4309197175C2777303404 @default.
- W4309197175 hasConceptScore W4309197175C2781278361 @default.
- W4309197175 hasConceptScore W4309197175C28826006 @default.
- W4309197175 hasConceptScore W4309197175C33923547 @default.
- W4309197175 hasConceptScore W4309197175C41008148 @default.
- W4309197175 hasConceptScore W4309197175C50522688 @default.
- W4309197175 hasConceptScore W4309197175C50644808 @default.
- W4309197175 hasConceptScore W4309197175C57879066 @default.
- W4309197175 hasConceptScore W4309197175C78458016 @default.
- W4309197175 hasConceptScore W4309197175C84655787 @default.
- W4309197175 hasConceptScore W4309197175C86803240 @default.
- W4309197175 hasConceptScore W4309197175C93779851 @default.
- W4309197175 hasFunder F4320321001 @default.
- W4309197175 hasFunder F4320325627 @default.
- W4309197175 hasIssue "4" @default.
- W4309197175 hasLocation W43091971751 @default.
- W4309197175 hasOpenAccess W4309197175 @default.
- W4309197175 hasPrimaryLocation W43091971751 @default.
- W4309197175 hasRelatedWork W1988277993 @default.