Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309199795> ?p ?o ?g. }
- W4309199795 endingPage "219" @default.
- W4309199795 startingPage "209" @default.
- W4309199795 abstract "Abstract Today, the advances in airborne LIDAR technology provide high‐resolution datasets that allow specialists to detect archaeological features hidden under wooded areas more efficiently. Still, the complexity and large scale of these datasets require automated analysis. In this respect, artificial intelligence (AI)‐based analysis has recently created an alternative approach for interpreting remote sensing data. In this study, a convolutional neural network (CNN) is proposed to detect clearance cairns, which are visible in today's landscape and act as important markers of past agricultural activities. For this aim, the U‐shape network architecture is adapted, trained from scratch with an original labelled dataset and tested in various field sites, focusing on southern Sweden. Although it is challenging to tune the hyperparameters and decide on the proper network architecture to obtain reliable prediction, long‐running experimental tests with this model produced promising results, with training and validation metrics of 0.8406 Dice‐coefficient, 0.7469 Val‐dice coefficient, and 0.7350 IuO and 0.6034 Val‐IoU values, once trained with the best parameters. Thus, the proposed CNN model in this study made data interpretation quicker and guided scholars to focus on the location of the target objects, opening a new frontier for future landscape analysis and archaeological research." @default.
- W4309199795 created "2022-11-24" @default.
- W4309199795 creator A5027022505 @default.
- W4309199795 creator A5051924946 @default.
- W4309199795 creator A5052811536 @default.
- W4309199795 creator A5064702166 @default.
- W4309199795 date "2022-11-15" @default.
- W4309199795 modified "2023-10-16" @default.
- W4309199795 title "Investigating ancient agricultural field systems in Sweden from airborne LIDAR data by using convolutional neural network" @default.
- W4309199795 cites W1575025623 @default.
- W4309199795 cites W1886711746 @default.
- W4309199795 cites W1901129140 @default.
- W4309199795 cites W1967892600 @default.
- W4309199795 cites W2010760482 @default.
- W4309199795 cites W2030039047 @default.
- W4309199795 cites W2083281122 @default.
- W4309199795 cites W2202777762 @default.
- W4309199795 cites W2236626706 @default.
- W4309199795 cites W2339652516 @default.
- W4309199795 cites W2395611524 @default.
- W4309199795 cites W2406607666 @default.
- W4309199795 cites W2472391669 @default.
- W4309199795 cites W2533800772 @default.
- W4309199795 cites W2592929672 @default.
- W4309199795 cites W2604671466 @default.
- W4309199795 cites W2731899572 @default.
- W4309199795 cites W2774320778 @default.
- W4309199795 cites W2787614951 @default.
- W4309199795 cites W2793222099 @default.
- W4309199795 cites W2793247683 @default.
- W4309199795 cites W2799928946 @default.
- W4309199795 cites W2801699037 @default.
- W4309199795 cites W2898318323 @default.
- W4309199795 cites W2903009718 @default.
- W4309199795 cites W2915754744 @default.
- W4309199795 cites W2917942747 @default.
- W4309199795 cites W2922858103 @default.
- W4309199795 cites W2925480424 @default.
- W4309199795 cites W2946728314 @default.
- W4309199795 cites W2947263797 @default.
- W4309199795 cites W2968611215 @default.
- W4309199795 cites W2969502539 @default.
- W4309199795 cites W2969736172 @default.
- W4309199795 cites W2971333596 @default.
- W4309199795 cites W2976849068 @default.
- W4309199795 cites W2981560029 @default.
- W4309199795 cites W2995748601 @default.
- W4309199795 cites W2997570459 @default.
- W4309199795 cites W3006781240 @default.
- W4309199795 cites W3008390414 @default.
- W4309199795 cites W3022476564 @default.
- W4309199795 cites W3033039186 @default.
- W4309199795 cites W3040955205 @default.
- W4309199795 cites W3085964710 @default.
- W4309199795 cites W3093852944 @default.
- W4309199795 cites W3096803387 @default.
- W4309199795 cites W3103657941 @default.
- W4309199795 cites W3127593607 @default.
- W4309199795 cites W3128185159 @default.
- W4309199795 cites W3161509981 @default.
- W4309199795 cites W3175071189 @default.
- W4309199795 cites W3177862120 @default.
- W4309199795 cites W3195742610 @default.
- W4309199795 cites W3210433242 @default.
- W4309199795 cites W4206436614 @default.
- W4309199795 cites W4220878435 @default.
- W4309199795 cites W47668503 @default.
- W4309199795 doi "https://doi.org/10.1002/arp.1886" @default.
- W4309199795 hasPublicationYear "2022" @default.
- W4309199795 type Work @default.
- W4309199795 citedByCount "3" @default.
- W4309199795 countsByYear W43091997952022 @default.
- W4309199795 countsByYear W43091997952023 @default.
- W4309199795 crossrefType "journal-article" @default.
- W4309199795 hasAuthorship W4309199795A5027022505 @default.
- W4309199795 hasAuthorship W4309199795A5051924946 @default.
- W4309199795 hasAuthorship W4309199795A5052811536 @default.
- W4309199795 hasAuthorship W4309199795A5064702166 @default.
- W4309199795 hasBestOaLocation W43091997951 @default.
- W4309199795 hasConcept C108583219 @default.
- W4309199795 hasConcept C119857082 @default.
- W4309199795 hasConcept C123657996 @default.
- W4309199795 hasConcept C154945302 @default.
- W4309199795 hasConcept C166957645 @default.
- W4309199795 hasConcept C185798385 @default.
- W4309199795 hasConcept C202444582 @default.
- W4309199795 hasConcept C205649164 @default.
- W4309199795 hasConcept C22029948 @default.
- W4309199795 hasConcept C2524010 @default.
- W4309199795 hasConcept C2778755073 @default.
- W4309199795 hasConcept C33923547 @default.
- W4309199795 hasConcept C41008148 @default.
- W4309199795 hasConcept C50644808 @default.
- W4309199795 hasConcept C51399673 @default.
- W4309199795 hasConcept C58640448 @default.
- W4309199795 hasConcept C62649853 @default.
- W4309199795 hasConcept C81363708 @default.
- W4309199795 hasConcept C8642999 @default.