Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309202290> ?p ?o ?g. }
- W4309202290 abstract "Abstract Niobium is a critical metal in high demand because of technological advances and the supply risk created by the fact that over 90% of its production is by a single country (Brazil). In this paper, we review the geology of the deposits that are currently being mined and other potentially economic deposits as well as develop models for their genesis. With the exception of the Lovozero deposit (Russia), which is hosted by a layered silica-undersaturated alkaline igneous complex, all the deposits that are currently being mined for niobium are hosted by carbonatites, and most of the deposits with economic potential are also hosted by these rocks. Niobium owes its concentration in carbonatites and alkaline silicate rocks to its highly incompatible nature and the small degree of partial melting of the mantle required to generate the corresponding magmas. The primary control on the concentration of niobium to economic levels in alkaline silicate magmas is fractional crystallization, partly prior to but mainly after emplacement. In the case of silica-undersaturated magmas, the final residue saturates in minerals like eudialyte and loparite to form niobium-rich horizons in the layered complexes that crystallize from these magmas. The final residue, in the case of silica-saturated magmas, crystallizes the pegmatites that are the hosts to the economic niobium mineralization, which commonly takes the form of pyrochlore. In contrast, carbonatitic magmas undergo little to no fractional crystallization prior to emplacement. Moreover, fractional crystallization on emplacement has minimal impact on the concentration of niobium to economic levels. Instead, we propose that the metasomatic interaction of the carbonatitic magmas with their hosts to form rocks like phlogopitite (glimmerite) consumes much of the magma, leaving behind a phoscoritic residue from which pyrochlore crystallizes in amounts sufficient to form economic deposits. Although many niobium deposits display evidence of intense hydrothermal alteration, during which there can be major changes in the niobium mineralogy, the extremely low solubility of niobium in aqueous fluids at elevated temperature precludes significant mobilization and, thus, enrichment of the metal by hydrothermal fluids. However, weathering of carbonatite-hosted niobium deposits leads to supergene enrichment (due largely to the dissolution of the carbonate minerals) that can double the niobium grade and make subeconomic deposits economic. Pyrochlore is the principal niobium mineral in these laterite-hosted deposits, although its composition differs considerably from that in the primary mineralization. This paper evaluates the processes that appear to be responsible for the genesis of niobium ores and provides a framework that we hope will guide future in-depth studies of niobium deposits and lead to more effective strategies for their successful exploration and exploitation." @default.
- W4309202290 created "2022-11-24" @default.
- W4309202290 creator A5043727060 @default.
- W4309202290 creator A5066987530 @default.
- W4309202290 date "2022-11-17" @default.
- W4309202290 modified "2023-10-18" @default.
- W4309202290 title "Niobium, Critical Metal, and Progeny of the Mantle" @default.
- W4309202290 cites W10075122 @default.
- W4309202290 cites W120110337 @default.
- W4309202290 cites W1567456792 @default.
- W4309202290 cites W1597967679 @default.
- W4309202290 cites W1789375511 @default.
- W4309202290 cites W1970710130 @default.
- W4309202290 cites W1995747961 @default.
- W4309202290 cites W2005877813 @default.
- W4309202290 cites W2007856561 @default.
- W4309202290 cites W2010853801 @default.
- W4309202290 cites W2011461577 @default.
- W4309202290 cites W2011834296 @default.
- W4309202290 cites W2025516507 @default.
- W4309202290 cites W2033140456 @default.
- W4309202290 cites W2038353049 @default.
- W4309202290 cites W2045084982 @default.
- W4309202290 cites W2052159407 @default.
- W4309202290 cites W2052443737 @default.
- W4309202290 cites W2057305327 @default.
- W4309202290 cites W2057322342 @default.
- W4309202290 cites W2064533643 @default.
- W4309202290 cites W2064655960 @default.
- W4309202290 cites W2070896405 @default.
- W4309202290 cites W2071386916 @default.
- W4309202290 cites W2090072525 @default.
- W4309202290 cites W2090171012 @default.
- W4309202290 cites W2095910002 @default.
- W4309202290 cites W2096328759 @default.
- W4309202290 cites W2099512276 @default.
- W4309202290 cites W2100499324 @default.
- W4309202290 cites W2116522668 @default.
- W4309202290 cites W2120561922 @default.
- W4309202290 cites W2120727828 @default.
- W4309202290 cites W2123084389 @default.
- W4309202290 cites W2130045139 @default.
- W4309202290 cites W2133745928 @default.
- W4309202290 cites W2161939913 @default.
- W4309202290 cites W2319070632 @default.
- W4309202290 cites W2323444654 @default.
- W4309202290 cites W2325725653 @default.
- W4309202290 cites W2340348368 @default.
- W4309202290 cites W2397463944 @default.
- W4309202290 cites W2462223115 @default.
- W4309202290 cites W2492711774 @default.
- W4309202290 cites W2525690762 @default.
- W4309202290 cites W2528013411 @default.
- W4309202290 cites W2528166575 @default.
- W4309202290 cites W2570479434 @default.
- W4309202290 cites W2616001908 @default.
- W4309202290 cites W2623449189 @default.
- W4309202290 cites W2736659337 @default.
- W4309202290 cites W2747388246 @default.
- W4309202290 cites W2770391152 @default.
- W4309202290 cites W2792275432 @default.
- W4309202290 cites W2933910026 @default.
- W4309202290 cites W2972425363 @default.
- W4309202290 cites W2976184013 @default.
- W4309202290 cites W3018098777 @default.
- W4309202290 cites W3208927596 @default.
- W4309202290 cites W4205110215 @default.
- W4309202290 cites W4225249832 @default.
- W4309202290 cites W4229025452 @default.
- W4309202290 cites W4245287945 @default.
- W4309202290 doi "https://doi.org/10.5382/econgeo.4994" @default.
- W4309202290 hasPublicationYear "2022" @default.
- W4309202290 type Work @default.
- W4309202290 citedByCount "3" @default.
- W4309202290 countsByYear W43092022902023 @default.
- W4309202290 crossrefType "journal-article" @default.
- W4309202290 hasAuthorship W4309202290A5043727060 @default.
- W4309202290 hasAuthorship W4309202290A5066987530 @default.
- W4309202290 hasConcept C11872896 @default.
- W4309202290 hasConcept C127313418 @default.
- W4309202290 hasConcept C140441402 @default.
- W4309202290 hasConcept C17409809 @default.
- W4309202290 hasConcept C178790620 @default.
- W4309202290 hasConcept C185592680 @default.
- W4309202290 hasConcept C191897082 @default.
- W4309202290 hasConcept C192562407 @default.
- W4309202290 hasConcept C195845463 @default.
- W4309202290 hasConcept C199289684 @default.
- W4309202290 hasConcept C203036418 @default.
- W4309202290 hasConcept C2777335606 @default.
- W4309202290 hasConcept C2779303976 @default.
- W4309202290 hasConcept C42787717 @default.
- W4309202290 hasConcept C44280652 @default.
- W4309202290 hasConcept C507968137 @default.
- W4309202290 hasConcept C67236022 @default.
- W4309202290 hasConcept C79572550 @default.
- W4309202290 hasConceptScore W4309202290C11872896 @default.
- W4309202290 hasConceptScore W4309202290C127313418 @default.
- W4309202290 hasConceptScore W4309202290C140441402 @default.
- W4309202290 hasConceptScore W4309202290C17409809 @default.