Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309203423> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4309203423 abstract "This paper proposes a new class of heterogeneous causal quantities, named textit{outcome conditioned} average structural derivatives (OASD) in a general nonseparable model. OASD is the average partial effect of a marginal change in a continuous treatment on the individuals located at different parts of the outcome distribution, irrespective of individuals' characteristics. OASD combines both features of ATE and QTE: it is interpreted as straightforwardly as ATE while at the same time more granular than ATE by breaking the entire population up according to the rank of the outcome distribution. One contribution of this paper is that we establish some close relationships between the textit{outcome conditioned average partial effects} and a class of parameters measuring the effect of counterfactually changing the distribution of a single covariate on the unconditional outcome quantiles. By exploiting such relationship, we can obtain root-$n$ consistent estimator and calculate the semi-parametric efficiency bound for these counterfactual effect parameters. We illustrate this point by two examples: equivalence between OASD and the unconditional partial quantile effect (Firpo et al. (2009)), and equivalence between the marginal partial distribution policy effect (Rothe (2012)) and a corresponding outcome conditioned parameter. Because identification of OASD is attained under a conditional exogeneity assumption, by controlling for a rich information about covariates, a researcher may ideally use high-dimensional controls in data. We propose for OASD a novel automatic debiased machine learning estimator, and present asymptotic statistical guarantees for it. We prove our estimator is root-$n$ consistent, asymptotically normal, and semiparametrically efficient. We also prove the validity of the bootstrap procedure for uniform inference on the OASD process." @default.
- W4309203423 created "2022-11-24" @default.
- W4309203423 creator A5001082939 @default.
- W4309203423 creator A5072086960 @default.
- W4309203423 creator A5075700383 @default.
- W4309203423 date "2022-11-15" @default.
- W4309203423 modified "2023-10-16" @default.
- W4309203423 title "Identification and Auto-debiased Machine Learning for Outcome Conditioned Average Structural Derivatives" @default.
- W4309203423 doi "https://doi.org/10.48550/arxiv.2211.07903" @default.
- W4309203423 hasPublicationYear "2022" @default.
- W4309203423 type Work @default.
- W4309203423 citedByCount "0" @default.
- W4309203423 crossrefType "posted-content" @default.
- W4309203423 hasAuthorship W4309203423A5001082939 @default.
- W4309203423 hasAuthorship W4309203423A5072086960 @default.
- W4309203423 hasAuthorship W4309203423A5075700383 @default.
- W4309203423 hasBestOaLocation W43092034231 @default.
- W4309203423 hasConcept C105795698 @default.
- W4309203423 hasConcept C118615104 @default.
- W4309203423 hasConcept C118671147 @default.
- W4309203423 hasConcept C119043178 @default.
- W4309203423 hasConcept C144024400 @default.
- W4309203423 hasConcept C144237770 @default.
- W4309203423 hasConcept C148220186 @default.
- W4309203423 hasConcept C149782125 @default.
- W4309203423 hasConcept C149923435 @default.
- W4309203423 hasConcept C185429906 @default.
- W4309203423 hasConcept C186215838 @default.
- W4309203423 hasConcept C2780069185 @default.
- W4309203423 hasConcept C28826006 @default.
- W4309203423 hasConcept C2908647359 @default.
- W4309203423 hasConcept C33923547 @default.
- W4309203423 hasConcept C610760 @default.
- W4309203423 hasConcept C89337504 @default.
- W4309203423 hasConceptScore W4309203423C105795698 @default.
- W4309203423 hasConceptScore W4309203423C118615104 @default.
- W4309203423 hasConceptScore W4309203423C118671147 @default.
- W4309203423 hasConceptScore W4309203423C119043178 @default.
- W4309203423 hasConceptScore W4309203423C144024400 @default.
- W4309203423 hasConceptScore W4309203423C144237770 @default.
- W4309203423 hasConceptScore W4309203423C148220186 @default.
- W4309203423 hasConceptScore W4309203423C149782125 @default.
- W4309203423 hasConceptScore W4309203423C149923435 @default.
- W4309203423 hasConceptScore W4309203423C185429906 @default.
- W4309203423 hasConceptScore W4309203423C186215838 @default.
- W4309203423 hasConceptScore W4309203423C2780069185 @default.
- W4309203423 hasConceptScore W4309203423C28826006 @default.
- W4309203423 hasConceptScore W4309203423C2908647359 @default.
- W4309203423 hasConceptScore W4309203423C33923547 @default.
- W4309203423 hasConceptScore W4309203423C610760 @default.
- W4309203423 hasConceptScore W4309203423C89337504 @default.
- W4309203423 hasLocation W43092034231 @default.
- W4309203423 hasLocation W43092034232 @default.
- W4309203423 hasOpenAccess W4309203423 @default.
- W4309203423 hasPrimaryLocation W43092034231 @default.
- W4309203423 hasRelatedWork W1907667133 @default.
- W4309203423 hasRelatedWork W1998653759 @default.
- W4309203423 hasRelatedWork W2601674663 @default.
- W4309203423 hasRelatedWork W2605590190 @default.
- W4309203423 hasRelatedWork W2910500741 @default.
- W4309203423 hasRelatedWork W2950396825 @default.
- W4309203423 hasRelatedWork W3121490443 @default.
- W4309203423 hasRelatedWork W3123305356 @default.
- W4309203423 hasRelatedWork W3124085487 @default.
- W4309203423 hasRelatedWork W4244386124 @default.
- W4309203423 isParatext "false" @default.
- W4309203423 isRetracted "false" @default.
- W4309203423 workType "article" @default.