Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309204057> ?p ?o ?g. }
- W4309204057 endingPage "119234" @default.
- W4309204057 startingPage "119234" @default.
- W4309204057 abstract "Spiking neural P (SN P) systems are membrane computing models inspired by the information interaction of spikes among neurons. Although real neurons have complex structures, classical SN P systems are two-dimensional graph structures. Neurons can only communicate in plane, which limits the learning ability of SN P systems in solving practical problems. To solve this issue, we propose in this paper hypergraph-based SN P (HSN P) systems containing three new classes of neurons to describe higher-order relationships among neurons. Three new kinds of rules among neurons are also designed to expand the model into planar, hierarchical and transmembrane computations. Based on the hypergraph-based spiking neural P systems, a new model for predicting the overall survival (OS) time of glioblastoma (GBM) patients is developed. The proposed model is evaluated on GBM cohorts from The Cancer Genome Atlas (TCGA-GBM). The HSN P system achieves good performance compared to the six state-of-the-art methods, thereby verifying the effectiveness of the model in predicting the OS time of GBM patients." @default.
- W4309204057 created "2022-11-24" @default.
- W4309204057 creator A5017402095 @default.
- W4309204057 creator A5029878497 @default.
- W4309204057 creator A5040643591 @default.
- W4309204057 creator A5070206463 @default.
- W4309204057 creator A5071172990 @default.
- W4309204057 creator A5090659792 @default.
- W4309204057 date "2023-04-01" @default.
- W4309204057 modified "2023-09-30" @default.
- W4309204057 title "Hypergraph-based spiking neural P systems for predicting the overall survival time of glioblastoma patients" @default.
- W4309204057 cites W2000137079 @default.
- W4309204057 cites W2009528637 @default.
- W4309204057 cites W2032007066 @default.
- W4309204057 cites W2040458067 @default.
- W4309204057 cites W2051112360 @default.
- W4309204057 cites W2088252378 @default.
- W4309204057 cites W2094172604 @default.
- W4309204057 cites W2102148524 @default.
- W4309204057 cites W2103868202 @default.
- W4309204057 cites W2125283600 @default.
- W4309204057 cites W2158485828 @default.
- W4309204057 cites W2158708642 @default.
- W4309204057 cites W2164675211 @default.
- W4309204057 cites W2183341477 @default.
- W4309204057 cites W2194775991 @default.
- W4309204057 cites W2282602956 @default.
- W4309204057 cites W2506804735 @default.
- W4309204057 cites W2533800772 @default.
- W4309204057 cites W2745632920 @default.
- W4309204057 cites W2750538963 @default.
- W4309204057 cites W2790522557 @default.
- W4309204057 cites W2898296895 @default.
- W4309204057 cites W2906110421 @default.
- W4309204057 cites W2911964244 @default.
- W4309204057 cites W2963016155 @default.
- W4309204057 cites W2963446712 @default.
- W4309204057 cites W2976653314 @default.
- W4309204057 cites W2998825217 @default.
- W4309204057 cites W2999083487 @default.
- W4309204057 cites W2999106318 @default.
- W4309204057 cites W3004866273 @default.
- W4309204057 cites W3053813224 @default.
- W4309204057 cites W3092465302 @default.
- W4309204057 cites W3109059087 @default.
- W4309204057 cites W3111212253 @default.
- W4309204057 cites W3117834991 @default.
- W4309204057 cites W3178131476 @default.
- W4309204057 cites W4220885598 @default.
- W4309204057 cites W4220913683 @default.
- W4309204057 cites W4252208101 @default.
- W4309204057 doi "https://doi.org/10.1016/j.eswa.2022.119234" @default.
- W4309204057 hasPublicationYear "2023" @default.
- W4309204057 type Work @default.
- W4309204057 citedByCount "1" @default.
- W4309204057 countsByYear W43092040572023 @default.
- W4309204057 crossrefType "journal-article" @default.
- W4309204057 hasAuthorship W4309204057A5017402095 @default.
- W4309204057 hasAuthorship W4309204057A5029878497 @default.
- W4309204057 hasAuthorship W4309204057A5040643591 @default.
- W4309204057 hasAuthorship W4309204057A5070206463 @default.
- W4309204057 hasAuthorship W4309204057A5071172990 @default.
- W4309204057 hasAuthorship W4309204057A5090659792 @default.
- W4309204057 hasConcept C11413529 @default.
- W4309204057 hasConcept C114614502 @default.
- W4309204057 hasConcept C11731999 @default.
- W4309204057 hasConcept C132525143 @default.
- W4309204057 hasConcept C154945302 @default.
- W4309204057 hasConcept C169760540 @default.
- W4309204057 hasConcept C2776194525 @default.
- W4309204057 hasConcept C2781221856 @default.
- W4309204057 hasConcept C2986949344 @default.
- W4309204057 hasConcept C33923547 @default.
- W4309204057 hasConcept C41008148 @default.
- W4309204057 hasConcept C45374587 @default.
- W4309204057 hasConcept C502942594 @default.
- W4309204057 hasConcept C50644808 @default.
- W4309204057 hasConcept C70641290 @default.
- W4309204057 hasConcept C80444323 @default.
- W4309204057 hasConcept C86803240 @default.
- W4309204057 hasConcept C96011364 @default.
- W4309204057 hasConceptScore W4309204057C11413529 @default.
- W4309204057 hasConceptScore W4309204057C114614502 @default.
- W4309204057 hasConceptScore W4309204057C11731999 @default.
- W4309204057 hasConceptScore W4309204057C132525143 @default.
- W4309204057 hasConceptScore W4309204057C154945302 @default.
- W4309204057 hasConceptScore W4309204057C169760540 @default.
- W4309204057 hasConceptScore W4309204057C2776194525 @default.
- W4309204057 hasConceptScore W4309204057C2781221856 @default.
- W4309204057 hasConceptScore W4309204057C2986949344 @default.
- W4309204057 hasConceptScore W4309204057C33923547 @default.
- W4309204057 hasConceptScore W4309204057C41008148 @default.
- W4309204057 hasConceptScore W4309204057C45374587 @default.
- W4309204057 hasConceptScore W4309204057C502942594 @default.
- W4309204057 hasConceptScore W4309204057C50644808 @default.
- W4309204057 hasConceptScore W4309204057C70641290 @default.
- W4309204057 hasConceptScore W4309204057C80444323 @default.
- W4309204057 hasConceptScore W4309204057C86803240 @default.