Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309204413> ?p ?o ?g. }
- W4309204413 endingPage "120697" @default.
- W4309204413 startingPage "120697" @default.
- W4309204413 abstract "Potentially toxic elements in agricultural soils are primarily derived from anthropogenic and geogenic sources. This study aims to predict and map antimony (Sb) concentration in soil using multiple regression kriging in two distinct modeling approaches, namely Sb prediction using data fusion coupled with regression kriging (scenario 1) and Sb prediction using data fusion, terrain attributes, and regression kriging (scenario 2). Cubist regression kriging (cubist_RK), conditional inference forest regression kriging (CIF_RK), extreme gradient boosting regression kriging (EGB_RK) and random forest regression kriging (RF_RK) were the modeling techniques used in the estimation of Sb concentration in agricultural soil. The validation results suggested that in scenario 1, EGB_RK was the optimal modeling approach for Sb prediction in agricultural soil with root mean square error (RMSE) = 1.31 and mean absolute error (MAE) = 0.61, bias = 0.37, and high coefficient of determination R2 = 0.81. Similarly, the EGB_RK was also the optimal modeling approach in scenario 2, with the highest R2 = 0.76, RMSE = 0.90, bias = 0.06, and MAE = 0.48 values than the other regression kriging modeling approaches. The cumulative assessment suggested that the EGB_RK in scenario 2 yielded optimal results compared to the respective modeling approach in scenario 1. The uncertainty propagated by the modeling approaches in both scenarios indicated that the degree of uncertainty during the modeling process was distributed across the study area from a low to a moderate uncertainty level. However, cubist_RK in scenario 2 exhibited some elevated spots of uncertainty levels. As a result, the combination of data fusion, terrain attributes, and regression kriging modeling approaches produces optimal results with a high R2 value, minimal errors as well as bias. Furthermore, combining terrain attributes with data fusion is promising for reducing model error, bias and yielding high-accuracy predictions." @default.
- W4309204413 created "2022-11-24" @default.
- W4309204413 creator A5019793888 @default.
- W4309204413 creator A5032061318 @default.
- W4309204413 creator A5048563984 @default.
- W4309204413 creator A5061080419 @default.
- W4309204413 creator A5073982129 @default.
- W4309204413 creator A5091682536 @default.
- W4309204413 date "2023-01-01" @default.
- W4309204413 modified "2023-10-16" @default.
- W4309204413 title "Prediction of the concentration of antimony in agricultural soil using data fusion, terrain attributes combined with regression kriging" @default.
- W4309204413 cites W1058055990 @default.
- W4309204413 cites W1520812622 @default.
- W4309204413 cites W1963646966 @default.
- W4309204413 cites W1967937233 @default.
- W4309204413 cites W1990653740 @default.
- W4309204413 cites W1994367365 @default.
- W4309204413 cites W1995819826 @default.
- W4309204413 cites W2029182256 @default.
- W4309204413 cites W2035871099 @default.
- W4309204413 cites W2066722804 @default.
- W4309204413 cites W2115380778 @default.
- W4309204413 cites W2123998733 @default.
- W4309204413 cites W2137053916 @default.
- W4309204413 cites W2163369992 @default.
- W4309204413 cites W2196379653 @default.
- W4309204413 cites W2253030359 @default.
- W4309204413 cites W2414369363 @default.
- W4309204413 cites W2508288402 @default.
- W4309204413 cites W2557037927 @default.
- W4309204413 cites W2566162582 @default.
- W4309204413 cites W2780625821 @default.
- W4309204413 cites W2811639663 @default.
- W4309204413 cites W2889352297 @default.
- W4309204413 cites W2891061560 @default.
- W4309204413 cites W2892284846 @default.
- W4309204413 cites W2901147812 @default.
- W4309204413 cites W2903042037 @default.
- W4309204413 cites W2908565355 @default.
- W4309204413 cites W2911964244 @default.
- W4309204413 cites W2914965248 @default.
- W4309204413 cites W2923985287 @default.
- W4309204413 cites W2962961817 @default.
- W4309204413 cites W2987591225 @default.
- W4309204413 cites W3005310106 @default.
- W4309204413 cites W3009927712 @default.
- W4309204413 cites W3010020030 @default.
- W4309204413 cites W3025231349 @default.
- W4309204413 cites W3160621151 @default.
- W4309204413 cites W3174178212 @default.
- W4309204413 cites W3175467669 @default.
- W4309204413 cites W3199918518 @default.
- W4309204413 cites W3203361017 @default.
- W4309204413 cites W326734094 @default.
- W4309204413 cites W4200114199 @default.
- W4309204413 cites W4291280482 @default.
- W4309204413 doi "https://doi.org/10.1016/j.envpol.2022.120697" @default.
- W4309204413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36403872" @default.
- W4309204413 hasPublicationYear "2023" @default.
- W4309204413 type Work @default.
- W4309204413 citedByCount "2" @default.
- W4309204413 countsByYear W43092044132023 @default.
- W4309204413 crossrefType "journal-article" @default.
- W4309204413 hasAuthorship W4309204413A5019793888 @default.
- W4309204413 hasAuthorship W4309204413A5032061318 @default.
- W4309204413 hasAuthorship W4309204413A5048563984 @default.
- W4309204413 hasAuthorship W4309204413A5061080419 @default.
- W4309204413 hasAuthorship W4309204413A5073982129 @default.
- W4309204413 hasAuthorship W4309204413A5091682536 @default.
- W4309204413 hasBestOaLocation W43092044131 @default.
- W4309204413 hasConcept C105795698 @default.
- W4309204413 hasConcept C139945424 @default.
- W4309204413 hasConcept C152877465 @default.
- W4309204413 hasConcept C159390177 @default.
- W4309204413 hasConcept C33923547 @default.
- W4309204413 hasConcept C39432304 @default.
- W4309204413 hasConcept C48921125 @default.
- W4309204413 hasConcept C81692654 @default.
- W4309204413 hasConcept C83546350 @default.
- W4309204413 hasConceptScore W4309204413C105795698 @default.
- W4309204413 hasConceptScore W4309204413C139945424 @default.
- W4309204413 hasConceptScore W4309204413C152877465 @default.
- W4309204413 hasConceptScore W4309204413C159390177 @default.
- W4309204413 hasConceptScore W4309204413C33923547 @default.
- W4309204413 hasConceptScore W4309204413C39432304 @default.
- W4309204413 hasConceptScore W4309204413C48921125 @default.
- W4309204413 hasConceptScore W4309204413C81692654 @default.
- W4309204413 hasConceptScore W4309204413C83546350 @default.
- W4309204413 hasLocation W43092044131 @default.
- W4309204413 hasLocation W43092044132 @default.
- W4309204413 hasOpenAccess W4309204413 @default.
- W4309204413 hasPrimaryLocation W43092044131 @default.
- W4309204413 hasRelatedWork W1987874405 @default.
- W4309204413 hasRelatedWork W2060912888 @default.
- W4309204413 hasRelatedWork W2066413987 @default.
- W4309204413 hasRelatedWork W2375721435 @default.
- W4309204413 hasRelatedWork W2966251753 @default.
- W4309204413 hasRelatedWork W3000069690 @default.