Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309205957> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4309205957 endingPage "115240" @default.
- W4309205957 startingPage "115240" @default.
- W4309205957 abstract "• Predict performance of compression yielded beam with T section by machine learning. • Various activation functions are tested for accurate prediction of moment capacity. • Support vector machine with combined kernel functions for section effectiveness. • Performance-based optimisation approach for compression yielded beam is proposed. Fibre reinforced polymer (FRP)-reinforced concrete beams usually encounter brittle failure due to the linear behaviour of FRP. To solve this issue, compression yielding (CY) concept was proposed recently to improve the ductility of FRP-reinforced concrete beams. However, because of the complexity of the compression yielding mechanism, the calculation of flexural capacity and ductility of FRP-reinforced concrete beam with CY block (CY beam) is challenging, especially for the CY beam with T section due to the lack of closed form solution. In this study, an integrated model is proposed based on machine learning method to evaluate the moment capacity and ductility of the CY beam with T section. To improve the prediction accuracy of the artificial neural network model for moment capacity, different activation functions are tested. The section effectiveness of CY beam with T section is evaluated using the proposed support vector machine model, which combines different kernel functions. Gaussian process regression is then employed to predict the ductility of CY beam with T section. It demonstrates that the developed integrated model can produce highly accurate predictions. In addition, a genetic algorithm (GA) is developed for identifying optimal CY beam section design solutions. Finally, the robustness of the model in the optimisation design for the CY beams with rectangular section and T section is demonstrated by using two numerical examples." @default.
- W4309205957 created "2022-11-24" @default.
- W4309205957 creator A5018068424 @default.
- W4309205957 creator A5035870404 @default.
- W4309205957 creator A5051208955 @default.
- W4309205957 creator A5054640457 @default.
- W4309205957 date "2023-01-01" @default.
- W4309205957 modified "2023-10-18" @default.
- W4309205957 title "Machine learning-driven evaluation and optimisation of compression yielded FRP-reinforced concrete beam with T section" @default.
- W4309205957 cites W1964357740 @default.
- W4309205957 cites W1967549404 @default.
- W4309205957 cites W1979449311 @default.
- W4309205957 cites W1981812629 @default.
- W4309205957 cites W1993080035 @default.
- W4309205957 cites W2011363920 @default.
- W4309205957 cites W2011388675 @default.
- W4309205957 cites W2068853477 @default.
- W4309205957 cites W2095271049 @default.
- W4309205957 cites W2120760394 @default.
- W4309205957 cites W2137307879 @default.
- W4309205957 cites W2755988749 @default.
- W4309205957 cites W2805257321 @default.
- W4309205957 cites W2912118475 @default.
- W4309205957 cites W2931882715 @default.
- W4309205957 cites W2972428446 @default.
- W4309205957 cites W2991278597 @default.
- W4309205957 cites W3007894517 @default.
- W4309205957 cites W3023212902 @default.
- W4309205957 cites W3126272279 @default.
- W4309205957 cites W3131046868 @default.
- W4309205957 cites W3157760823 @default.
- W4309205957 cites W3203798440 @default.
- W4309205957 cites W3207178640 @default.
- W4309205957 cites W3210682174 @default.
- W4309205957 cites W3217338757 @default.
- W4309205957 cites W4206032151 @default.
- W4309205957 cites W4239510810 @default.
- W4309205957 doi "https://doi.org/10.1016/j.engstruct.2022.115240" @default.
- W4309205957 hasPublicationYear "2023" @default.
- W4309205957 type Work @default.
- W4309205957 citedByCount "4" @default.
- W4309205957 countsByYear W43092059572023 @default.
- W4309205957 crossrefType "journal-article" @default.
- W4309205957 hasAuthorship W4309205957A5018068424 @default.
- W4309205957 hasAuthorship W4309205957A5035870404 @default.
- W4309205957 hasAuthorship W4309205957A5051208955 @default.
- W4309205957 hasAuthorship W4309205957A5054640457 @default.
- W4309205957 hasConcept C111919701 @default.
- W4309205957 hasConcept C127413603 @default.
- W4309205957 hasConcept C159985019 @default.
- W4309205957 hasConcept C168834538 @default.
- W4309205957 hasConcept C180016635 @default.
- W4309205957 hasConcept C192562407 @default.
- W4309205957 hasConcept C2780129039 @default.
- W4309205957 hasConcept C2988805333 @default.
- W4309205957 hasConcept C41008148 @default.
- W4309205957 hasConcept C66938386 @default.
- W4309205957 hasConcept C76344452 @default.
- W4309205957 hasConceptScore W4309205957C111919701 @default.
- W4309205957 hasConceptScore W4309205957C127413603 @default.
- W4309205957 hasConceptScore W4309205957C159985019 @default.
- W4309205957 hasConceptScore W4309205957C168834538 @default.
- W4309205957 hasConceptScore W4309205957C180016635 @default.
- W4309205957 hasConceptScore W4309205957C192562407 @default.
- W4309205957 hasConceptScore W4309205957C2780129039 @default.
- W4309205957 hasConceptScore W4309205957C2988805333 @default.
- W4309205957 hasConceptScore W4309205957C41008148 @default.
- W4309205957 hasConceptScore W4309205957C66938386 @default.
- W4309205957 hasConceptScore W4309205957C76344452 @default.
- W4309205957 hasFunder F4320334704 @default.
- W4309205957 hasLocation W43092059571 @default.
- W4309205957 hasOpenAccess W4309205957 @default.
- W4309205957 hasPrimaryLocation W43092059571 @default.
- W4309205957 hasRelatedWork W1484362229 @default.
- W4309205957 hasRelatedWork W2018752562 @default.
- W4309205957 hasRelatedWork W2080262527 @default.
- W4309205957 hasRelatedWork W2167401411 @default.
- W4309205957 hasRelatedWork W2329379447 @default.
- W4309205957 hasRelatedWork W2355535078 @default.
- W4309205957 hasRelatedWork W2364877205 @default.
- W4309205957 hasRelatedWork W2381611648 @default.
- W4309205957 hasRelatedWork W2899084033 @default.
- W4309205957 hasRelatedWork W4311689990 @default.
- W4309205957 hasVolume "275" @default.
- W4309205957 isParatext "false" @default.
- W4309205957 isRetracted "false" @default.
- W4309205957 workType "article" @default.