Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309211090> ?p ?o ?g. }
- W4309211090 endingPage "1899" @default.
- W4309211090 startingPage "1899" @default.
- W4309211090 abstract "The early prediction of diabetes can facilitate interventions to prevent or delay it. This study proposes a diabetes prediction model based on machine learning (ML) to encourage individuals at risk of diabetes to employ healthy interventions. A total of 38,379 subjects were included. We trained the model on 80% of the subjects and verified its predictive performance on the remaining 20%. Furthermore, the performances of several algorithms were compared, including logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), Cox regression, and XGBoost Survival Embedding (XGBSE). The area under the receiver operating characteristic curve (AUROC) of the XGBoost model was the largest, followed by those of the decision tree, logistic regression, and random forest models. For the survival analysis, XGBSE yielded an AUROC exceeding 0.9 for the 2- to 9-year predictions and a C-index of 0.934, while the Cox regression achieved a C-index of 0.921. After lowering the threshold from 0.5 to 0.25, the sensitivity increased from 0.011 to 0.236 for the 2-year prediction model and from 0.607 to 0.994 for the 9-year prediction model, while the specificity showed negligible changes. We developed a high-performance diabetes prediction model that applied the XGBSE algorithm with threshold adjustment. We plan to use this prediction model in real clinical practice for diabetes prevention after simplifying and validating it externally." @default.
- W4309211090 created "2022-11-24" @default.
- W4309211090 creator A5000685231 @default.
- W4309211090 creator A5046358832 @default.
- W4309211090 creator A5054530987 @default.
- W4309211090 creator A5068171082 @default.
- W4309211090 creator A5071412381 @default.
- W4309211090 creator A5078795637 @default.
- W4309211090 date "2022-11-14" @default.
- W4309211090 modified "2023-10-14" @default.
- W4309211090 title "Improving Machine Learning Diabetes Prediction Models for the Utmost Clinical Effectiveness" @default.
- W4309211090 cites W156715218 @default.
- W4309211090 cites W1975517271 @default.
- W4309211090 cites W1979595233 @default.
- W4309211090 cites W1988541503 @default.
- W4309211090 cites W1989271455 @default.
- W4309211090 cites W2026935760 @default.
- W4309211090 cites W2090742050 @default.
- W4309211090 cites W2101430875 @default.
- W4309211090 cites W2103276278 @default.
- W4309211090 cites W2167567684 @default.
- W4309211090 cites W2177870565 @default.
- W4309211090 cites W2303796163 @default.
- W4309211090 cites W2340606245 @default.
- W4309211090 cites W2531360867 @default.
- W4309211090 cites W2592729103 @default.
- W4309211090 cites W2887288752 @default.
- W4309211090 cites W2900011268 @default.
- W4309211090 cites W2909965413 @default.
- W4309211090 cites W2910621788 @default.
- W4309211090 cites W2969746584 @default.
- W4309211090 cites W2979425332 @default.
- W4309211090 cites W2998729982 @default.
- W4309211090 cites W3016971311 @default.
- W4309211090 cites W3026865292 @default.
- W4309211090 cites W3044845446 @default.
- W4309211090 cites W3081836309 @default.
- W4309211090 cites W3083610965 @default.
- W4309211090 cites W3083831099 @default.
- W4309211090 cites W3092018978 @default.
- W4309211090 cites W3102476541 @default.
- W4309211090 cites W3108251697 @default.
- W4309211090 cites W3111698685 @default.
- W4309211090 cites W3129807388 @default.
- W4309211090 cites W3130693242 @default.
- W4309211090 cites W3135028703 @default.
- W4309211090 cites W3137532457 @default.
- W4309211090 cites W3160468331 @default.
- W4309211090 cites W3167252455 @default.
- W4309211090 cites W3181580017 @default.
- W4309211090 cites W3209518749 @default.
- W4309211090 cites W3215077064 @default.
- W4309211090 cites W4200541254 @default.
- W4309211090 cites W4221120492 @default.
- W4309211090 cites W4241952593 @default.
- W4309211090 cites W4376595339 @default.
- W4309211090 doi "https://doi.org/10.3390/jpm12111899" @default.
- W4309211090 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36422075" @default.
- W4309211090 hasPublicationYear "2022" @default.
- W4309211090 type Work @default.
- W4309211090 citedByCount "0" @default.
- W4309211090 crossrefType "journal-article" @default.
- W4309211090 hasAuthorship W4309211090A5000685231 @default.
- W4309211090 hasAuthorship W4309211090A5046358832 @default.
- W4309211090 hasAuthorship W4309211090A5054530987 @default.
- W4309211090 hasAuthorship W4309211090A5068171082 @default.
- W4309211090 hasAuthorship W4309211090A5071412381 @default.
- W4309211090 hasAuthorship W4309211090A5078795637 @default.
- W4309211090 hasBestOaLocation W43092110901 @default.
- W4309211090 hasConcept C105795698 @default.
- W4309211090 hasConcept C118552586 @default.
- W4309211090 hasConcept C119857082 @default.
- W4309211090 hasConcept C124101348 @default.
- W4309211090 hasConcept C126322002 @default.
- W4309211090 hasConcept C134018914 @default.
- W4309211090 hasConcept C151956035 @default.
- W4309211090 hasConcept C154945302 @default.
- W4309211090 hasConcept C169258074 @default.
- W4309211090 hasConcept C27415008 @default.
- W4309211090 hasConcept C33923547 @default.
- W4309211090 hasConcept C41008148 @default.
- W4309211090 hasConcept C45804977 @default.
- W4309211090 hasConcept C50382708 @default.
- W4309211090 hasConcept C555293320 @default.
- W4309211090 hasConcept C58471807 @default.
- W4309211090 hasConcept C70153297 @default.
- W4309211090 hasConcept C71924100 @default.
- W4309211090 hasConcept C83546350 @default.
- W4309211090 hasConcept C84525736 @default.
- W4309211090 hasConceptScore W4309211090C105795698 @default.
- W4309211090 hasConceptScore W4309211090C118552586 @default.
- W4309211090 hasConceptScore W4309211090C119857082 @default.
- W4309211090 hasConceptScore W4309211090C124101348 @default.
- W4309211090 hasConceptScore W4309211090C126322002 @default.
- W4309211090 hasConceptScore W4309211090C134018914 @default.
- W4309211090 hasConceptScore W4309211090C151956035 @default.
- W4309211090 hasConceptScore W4309211090C154945302 @default.
- W4309211090 hasConceptScore W4309211090C169258074 @default.