Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309218260> ?p ?o ?g. }
- W4309218260 abstract "Abstract Background Molecular subtyping of brain tissue provides insights into the heterogeneity of common neurodegenerative conditions, such as Alzheimer’s disease (AD). However, existing subtyping studies have mostly focused on single data modalities and only those individuals with severe cognitive impairment. To address these gaps, we applied Similarity Network Fusion (SNF), a method capable of integrating multiple high-dimensional multi-’omic data modalities simultaneously, to an elderly sample spanning the full spectrum of cognitive aging trajectories. Methods We analyzed human frontal cortex brain samples characterized by five ‘omic modalities: bulk RNA sequencing (18,629 genes), DNA methylation (53,932 cpg sites), histone H3K9 acetylation (26,384 peaks), proteomics (7,737 proteins), and metabolomics (654 metabolites). SNF followed by spectral clustering was used for subtype detection, and subtype numbers were determined by eigen-gap and rotation cost statistics. Normalized Mutual Information (NMI) determined the relative contribution of each modality to the fused network. Subtypes were characterized by associations with 13 age-related neuropathologies and cognitive decline. Results Fusion of all five data modalities (n=111) yielded two subtypes (n S1 =53, n S2 =58) which were nominally associated with diffuse amyloid plaques; however, this effect was not significant after correction for multiple testing. Histone acetylation (NMI=0.38), DNA methylation (NMI=0.18) and RNA abundance (NMI=0.15) contributed most strongly to this network. Secondary analysis integrating only these three modalities in a larger subsample (n=513) indicated support for both 3- and 5-subtype solutions, which had significant overlap, but showed varying degrees of internal stability and external validity. One subtype showed marked cognitive decline, which remained significant even after correcting for tests across both 3- and 5-subtype solutions ( p Bonf =5.9×10 −3 ). Comparison to single-modality subtypes demonstrated that the three-modal subtypes were able to uniquely capture cognitive variability. Comprehensive sensitivity analyses explored influences of sample size and cluster number parameters. Conclusion We identified highly integrative molecular subtypes of aging derived from multiple high dimensional, multi-’omic data modalities simultaneously. Fusing RNA abundance, DNA methylation, and H3K9 acetylation measures generated subtypes that were associated with cognitive decline. This work highlights the potential value and challenges of multi-’omic integration in unsupervised subtyping of postmortem brain." @default.
- W4309218260 created "2022-11-24" @default.
- W4309218260 creator A5014075642 @default.
- W4309218260 creator A5033827757 @default.
- W4309218260 creator A5047604705 @default.
- W4309218260 creator A5057792156 @default.
- W4309218260 creator A5069094037 @default.
- W4309218260 creator A5077607166 @default.
- W4309218260 date "2022-11-17" @default.
- W4309218260 modified "2023-10-15" @default.
- W4309218260 title "Multi-‘Omic Integration via Similarity Network Fusion to Detect Molecular Subtypes of Aging" @default.
- W4309218260 cites W1581476053 @default.
- W4309218260 cites W1702095876 @default.
- W4309218260 cites W1968025986 @default.
- W4309218260 cites W1987219048 @default.
- W4309218260 cites W1992929897 @default.
- W4309218260 cites W2000695497 @default.
- W4309218260 cites W2007439698 @default.
- W4309218260 cites W2019699796 @default.
- W4309218260 cites W2022837634 @default.
- W4309218260 cites W2038034523 @default.
- W4309218260 cites W2074750860 @default.
- W4309218260 cites W2076399300 @default.
- W4309218260 cites W2128016314 @default.
- W4309218260 cites W2133098435 @default.
- W4309218260 cites W2135374418 @default.
- W4309218260 cites W2135771073 @default.
- W4309218260 cites W2135945534 @default.
- W4309218260 cites W2156483112 @default.
- W4309218260 cites W2157638357 @default.
- W4309218260 cites W2159188744 @default.
- W4309218260 cites W2203610959 @default.
- W4309218260 cites W2593272776 @default.
- W4309218260 cites W2603228471 @default.
- W4309218260 cites W2606743538 @default.
- W4309218260 cites W2625978773 @default.
- W4309218260 cites W2725718031 @default.
- W4309218260 cites W2735378853 @default.
- W4309218260 cites W2766580836 @default.
- W4309218260 cites W2767982909 @default.
- W4309218260 cites W2789949350 @default.
- W4309218260 cites W2804633924 @default.
- W4309218260 cites W2809330972 @default.
- W4309218260 cites W2857722519 @default.
- W4309218260 cites W2884682196 @default.
- W4309218260 cites W2884724578 @default.
- W4309218260 cites W2904237875 @default.
- W4309218260 cites W2913710075 @default.
- W4309218260 cites W2946720770 @default.
- W4309218260 cites W2950886245 @default.
- W4309218260 cites W2951091426 @default.
- W4309218260 cites W2951837249 @default.
- W4309218260 cites W2979573534 @default.
- W4309218260 cites W2986788348 @default.
- W4309218260 cites W2997062412 @default.
- W4309218260 cites W2997092212 @default.
- W4309218260 cites W3005428757 @default.
- W4309218260 cites W3009710006 @default.
- W4309218260 cites W3013910169 @default.
- W4309218260 cites W3021012518 @default.
- W4309218260 cites W3040954328 @default.
- W4309218260 cites W3044428842 @default.
- W4309218260 cites W3095429197 @default.
- W4309218260 cites W3102265646 @default.
- W4309218260 cites W3106855054 @default.
- W4309218260 cites W3109942090 @default.
- W4309218260 cites W3112948680 @default.
- W4309218260 cites W3118773559 @default.
- W4309218260 cites W3131795490 @default.
- W4309218260 cites W3136328452 @default.
- W4309218260 cites W3158460188 @default.
- W4309218260 cites W3160136018 @default.
- W4309218260 cites W3166452264 @default.
- W4309218260 cites W3173875945 @default.
- W4309218260 cites W3178385120 @default.
- W4309218260 cites W4206055706 @default.
- W4309218260 cites W4206300026 @default.
- W4309218260 cites W4210381047 @default.
- W4309218260 cites W4225327820 @default.
- W4309218260 cites W4243746943 @default.
- W4309218260 cites W4281628121 @default.
- W4309218260 doi "https://doi.org/10.1101/2022.11.16.516806" @default.
- W4309218260 hasPublicationYear "2022" @default.
- W4309218260 type Work @default.
- W4309218260 citedByCount "1" @default.
- W4309218260 countsByYear W43092182602023 @default.
- W4309218260 crossrefType "posted-content" @default.
- W4309218260 hasAuthorship W4309218260A5014075642 @default.
- W4309218260 hasAuthorship W4309218260A5033827757 @default.
- W4309218260 hasAuthorship W4309218260A5047604705 @default.
- W4309218260 hasAuthorship W4309218260A5057792156 @default.
- W4309218260 hasAuthorship W4309218260A5069094037 @default.
- W4309218260 hasAuthorship W4309218260A5077607166 @default.
- W4309218260 hasBestOaLocation W43092182601 @default.
- W4309218260 hasConcept C104317684 @default.
- W4309218260 hasConcept C144024400 @default.
- W4309218260 hasConcept C150194340 @default.
- W4309218260 hasConcept C190727270 @default.
- W4309218260 hasConcept C199360897 @default.
- W4309218260 hasConcept C2779903281 @default.