Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309231716> ?p ?o ?g. }
- W4309231716 abstract "Abstract The increase of bacterial resistance to currently available antibiotics has underlined the urgent need to develop new antibiotic drugs. Antimicrobial peptides (AMPs), alone or in combination with other peptides and/or existing antibiotics, have emerged as promising candidates for this task. However, given that there are thousands of known AMPs and an even larger number can be synthesized, it is inefficient to comprehensively test all of them using standard wet lab experimental methods. These observations stimulated an application of machine-learning methods to identify promising AMPs. Currently, machine learning studies frequently combine very different bacteria without considering bacteria-specific features or interactions with AMPs. In addition, the sparsity of current AMP data sets of antimicrobial activity disqualifies the application of traditional machine-learning methods or renders the results unreliable. Here we present a new approach, featuring neighborhood-based collaborative filtering, to predict with high accuracy a given bacteria’s response to untested AMPs, AMP-AMP combinations, and AMP-antibiotic combinations based on similarities between bacterial responses. Furthermore, we also developed a complementary bacteria-specific link approach that can be used to visualize networks of AMP-antibiotic combinations, enabling us to suggest new combinations that are likely to be effective. Our theoretical analysis of AMP physico-chemical features suggests that there is an optimal similarity between two different AMPs that exhibit strong synergistic behavior. This principle, alongside with our specific results, can be applied to find or design effective AMP-AMP combinations that are target-specific. Author summary It is well known that combinations of different antimicrobial peptides (AMPs), in comparison to single AMP species, can lead to more efficient antimicrobial activity, but the large number of possible combinations requires the application of efficient machine-learning methods. We developed a new approach consisting of collaborative filtering, link prediction, and AMP feature analysis to predict previously-unknown, bacteria-specific activity of AMP combinations, suggest novel synergistic AMP-antibiotic combinations, and guide future design of effective AMP-AMP combinations." @default.
- W4309231716 created "2022-11-24" @default.
- W4309231716 creator A5040071198 @default.
- W4309231716 creator A5042785295 @default.
- W4309231716 creator A5076248433 @default.
- W4309231716 date "2022-11-17" @default.
- W4309231716 modified "2023-10-16" @default.
- W4309231716 title "Predicting Antimicrobial Activity for Untested Peptide-Based Drugs Using Collaborative Filtering and Link Prediction" @default.
- W4309231716 cites W1161601223 @default.
- W4309231716 cites W1503472448 @default.
- W4309231716 cites W2013133956 @default.
- W4309231716 cites W2017148081 @default.
- W4309231716 cites W2107710939 @default.
- W4309231716 cites W2132963724 @default.
- W4309231716 cites W2160257187 @default.
- W4309231716 cites W2270273464 @default.
- W4309231716 cites W2279347084 @default.
- W4309231716 cites W2404472757 @default.
- W4309231716 cites W2555630365 @default.
- W4309231716 cites W2758431083 @default.
- W4309231716 cites W2766842911 @default.
- W4309231716 cites W2789517562 @default.
- W4309231716 cites W2801924301 @default.
- W4309231716 cites W2804562858 @default.
- W4309231716 cites W2806953728 @default.
- W4309231716 cites W2891837572 @default.
- W4309231716 cites W2901328420 @default.
- W4309231716 cites W2904983307 @default.
- W4309231716 cites W2911961468 @default.
- W4309231716 cites W3000464479 @default.
- W4309231716 cites W3003341178 @default.
- W4309231716 cites W3026640598 @default.
- W4309231716 cites W3040996852 @default.
- W4309231716 cites W3048097141 @default.
- W4309231716 cites W3081201079 @default.
- W4309231716 cites W3097405028 @default.
- W4309231716 cites W3098913677 @default.
- W4309231716 cites W3132461851 @default.
- W4309231716 cites W3176151506 @default.
- W4309231716 cites W3182706339 @default.
- W4309231716 cites W3188733779 @default.
- W4309231716 cites W3196304395 @default.
- W4309231716 cites W3199618438 @default.
- W4309231716 cites W4205747301 @default.
- W4309231716 cites W4226303323 @default.
- W4309231716 cites W4296038133 @default.
- W4309231716 cites W4297614008 @default.
- W4309231716 cites W586052667 @default.
- W4309231716 doi "https://doi.org/10.1101/2022.11.16.516845" @default.
- W4309231716 hasPublicationYear "2022" @default.
- W4309231716 type Work @default.
- W4309231716 citedByCount "0" @default.
- W4309231716 crossrefType "posted-content" @default.
- W4309231716 hasAuthorship W4309231716A5040071198 @default.
- W4309231716 hasAuthorship W4309231716A5042785295 @default.
- W4309231716 hasAuthorship W4309231716A5076248433 @default.
- W4309231716 hasBestOaLocation W43092317161 @default.
- W4309231716 hasConcept C103278499 @default.
- W4309231716 hasConcept C115961682 @default.
- W4309231716 hasConcept C119857082 @default.
- W4309231716 hasConcept C127413603 @default.
- W4309231716 hasConcept C154945302 @default.
- W4309231716 hasConcept C183696295 @default.
- W4309231716 hasConcept C201995342 @default.
- W4309231716 hasConcept C21569690 @default.
- W4309231716 hasConcept C2778753846 @default.
- W4309231716 hasConcept C2780451532 @default.
- W4309231716 hasConcept C31258907 @default.
- W4309231716 hasConcept C41008148 @default.
- W4309231716 hasConcept C4937899 @default.
- W4309231716 hasConcept C501593827 @default.
- W4309231716 hasConcept C523546767 @default.
- W4309231716 hasConcept C540938839 @default.
- W4309231716 hasConcept C54355233 @default.
- W4309231716 hasConcept C557471498 @default.
- W4309231716 hasConcept C70721500 @default.
- W4309231716 hasConcept C86803240 @default.
- W4309231716 hasConcept C89423630 @default.
- W4309231716 hasConcept C94665300 @default.
- W4309231716 hasConceptScore W4309231716C103278499 @default.
- W4309231716 hasConceptScore W4309231716C115961682 @default.
- W4309231716 hasConceptScore W4309231716C119857082 @default.
- W4309231716 hasConceptScore W4309231716C127413603 @default.
- W4309231716 hasConceptScore W4309231716C154945302 @default.
- W4309231716 hasConceptScore W4309231716C183696295 @default.
- W4309231716 hasConceptScore W4309231716C201995342 @default.
- W4309231716 hasConceptScore W4309231716C21569690 @default.
- W4309231716 hasConceptScore W4309231716C2778753846 @default.
- W4309231716 hasConceptScore W4309231716C2780451532 @default.
- W4309231716 hasConceptScore W4309231716C31258907 @default.
- W4309231716 hasConceptScore W4309231716C41008148 @default.
- W4309231716 hasConceptScore W4309231716C4937899 @default.
- W4309231716 hasConceptScore W4309231716C501593827 @default.
- W4309231716 hasConceptScore W4309231716C523546767 @default.
- W4309231716 hasConceptScore W4309231716C540938839 @default.
- W4309231716 hasConceptScore W4309231716C54355233 @default.
- W4309231716 hasConceptScore W4309231716C557471498 @default.
- W4309231716 hasConceptScore W4309231716C70721500 @default.
- W4309231716 hasConceptScore W4309231716C86803240 @default.
- W4309231716 hasConceptScore W4309231716C89423630 @default.