Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309233661> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4309233661 endingPage "3190" @default.
- W4309233661 startingPage "3172" @default.
- W4309233661 abstract "With the rapid growth of the coronavirus disease of 2019 (COVID-19) cases, massive amounts of relevant data are being trained on machine learning models for countering communicable infectious diseases. Federated Learning (FL) is a paradigm of distributed machine learning to deal with the individual COVID-19 data, and enable the protection of data privacy. However, FL has low efficiency in Edge-Based wireless communication systems with system heterogeneity. In this paper, we propose an “Asynchronous-Adaptive FL” (AAFL) scheme. Specifically, we allow that medical devices with different performances have a heterogeneous number of local SGD iterations in each communication round, called asynchronous iteration strategy which is balanced under adaptive control. We theoretically analyze the convergence of the AAFL scheme under a given time budget and obtain a mathematical relationship between the heterogeneous number of local SGD iterations and the optimal model parameters. Based on the mathematical relationship, we design an algorithm for parameter server and work nodes to adaptively control the heterogeneous number of local SGD iterations. Subsequently, we build a prototype heterogeneous system and conduct experiments on various scenarios for analyzing the general properties of our algorithm, and then apply our algorithm to public COVID-19 databases. The experimental results and application performance demonstrate the effectiveness and efficiency of our AAFL scheme." @default.
- W4309233661 created "2022-11-24" @default.
- W4309233661 creator A5006665439 @default.
- W4309233661 creator A5039415171 @default.
- W4309233661 creator A5054232978 @default.
- W4309233661 creator A5060739571 @default.
- W4309233661 date "2022-11-01" @default.
- W4309233661 modified "2023-10-02" @default.
- W4309233661 title "AAFL: Asynchronous-Adaptive Federated Learning in Edge-Based Wireless Communication Systems for Countering Communicable Infectious Diseasess" @default.
- W4309233661 cites W2112796928 @default.
- W4309233661 cites W2903777941 @default.
- W4309233661 cites W2963318081 @default.
- W4309233661 cites W2965871883 @default.
- W4309233661 cites W2998045710 @default.
- W4309233661 cites W3015157326 @default.
- W4309233661 cites W3015613093 @default.
- W4309233661 cites W3027313259 @default.
- W4309233661 cites W3043820882 @default.
- W4309233661 cites W3087704775 @default.
- W4309233661 cites W3111353854 @default.
- W4309233661 cites W3113075536 @default.
- W4309233661 cites W3127299377 @default.
- W4309233661 cites W3155545305 @default.
- W4309233661 cites W3156068868 @default.
- W4309233661 cites W3163893137 @default.
- W4309233661 cites W3164900515 @default.
- W4309233661 cites W3200840849 @default.
- W4309233661 cites W3203503583 @default.
- W4309233661 cites W4200380626 @default.
- W4309233661 cites W4206742934 @default.
- W4309233661 cites W4294106961 @default.
- W4309233661 doi "https://doi.org/10.1109/jsac.2022.3211564" @default.
- W4309233661 hasPublicationYear "2022" @default.
- W4309233661 type Work @default.
- W4309233661 citedByCount "2" @default.
- W4309233661 countsByYear W43092336612023 @default.
- W4309233661 crossrefType "journal-article" @default.
- W4309233661 hasAuthorship W4309233661A5006665439 @default.
- W4309233661 hasAuthorship W4309233661A5039415171 @default.
- W4309233661 hasAuthorship W4309233661A5054232978 @default.
- W4309233661 hasAuthorship W4309233661A5060739571 @default.
- W4309233661 hasConcept C120314980 @default.
- W4309233661 hasConcept C134306372 @default.
- W4309233661 hasConcept C151319957 @default.
- W4309233661 hasConcept C154945302 @default.
- W4309233661 hasConcept C162307627 @default.
- W4309233661 hasConcept C162324750 @default.
- W4309233661 hasConcept C2777303404 @default.
- W4309233661 hasConcept C31258907 @default.
- W4309233661 hasConcept C33923547 @default.
- W4309233661 hasConcept C41008148 @default.
- W4309233661 hasConcept C50522688 @default.
- W4309233661 hasConcept C555944384 @default.
- W4309233661 hasConcept C76155785 @default.
- W4309233661 hasConcept C77618280 @default.
- W4309233661 hasConceptScore W4309233661C120314980 @default.
- W4309233661 hasConceptScore W4309233661C134306372 @default.
- W4309233661 hasConceptScore W4309233661C151319957 @default.
- W4309233661 hasConceptScore W4309233661C154945302 @default.
- W4309233661 hasConceptScore W4309233661C162307627 @default.
- W4309233661 hasConceptScore W4309233661C162324750 @default.
- W4309233661 hasConceptScore W4309233661C2777303404 @default.
- W4309233661 hasConceptScore W4309233661C31258907 @default.
- W4309233661 hasConceptScore W4309233661C33923547 @default.
- W4309233661 hasConceptScore W4309233661C41008148 @default.
- W4309233661 hasConceptScore W4309233661C50522688 @default.
- W4309233661 hasConceptScore W4309233661C555944384 @default.
- W4309233661 hasConceptScore W4309233661C76155785 @default.
- W4309233661 hasConceptScore W4309233661C77618280 @default.
- W4309233661 hasFunder F4320321001 @default.
- W4309233661 hasFunder F4320335957 @default.
- W4309233661 hasIssue "11" @default.
- W4309233661 hasLocation W43092336611 @default.
- W4309233661 hasOpenAccess W4309233661 @default.
- W4309233661 hasPrimaryLocation W43092336611 @default.
- W4309233661 hasRelatedWork W1548344605 @default.
- W4309233661 hasRelatedWork W2006363920 @default.
- W4309233661 hasRelatedWork W2122091831 @default.
- W4309233661 hasRelatedWork W2136415198 @default.
- W4309233661 hasRelatedWork W2362260319 @default.
- W4309233661 hasRelatedWork W2364921833 @default.
- W4309233661 hasRelatedWork W2367372208 @default.
- W4309233661 hasRelatedWork W2475836838 @default.
- W4309233661 hasRelatedWork W3100791781 @default.
- W4309233661 hasRelatedWork W4283814387 @default.
- W4309233661 hasVolume "40" @default.
- W4309233661 isParatext "false" @default.
- W4309233661 isRetracted "false" @default.
- W4309233661 workType "article" @default.