Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309242556> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4309242556 abstract "A resource efficient neural network based gas classifier using the 1.5-bit quantization of sensing channel difference as the feature extraction is proposed in this paper, which is designated for unattended electronic noses for long-term surveillance. The feature rate of the proposed method is as low as 48 bits per second (bps), significantly reducing the computational complexity of the classifier compared with state-of-the-art works. Based on the simple and identifiable features, a slight fully connected neural network (SFCN) is proposed as a gas classifier. The parameters and floating-point operations per second (FLOPs) are reduced 41 and 624 than state-of-the-art gas classifiers, respectively. A self-recorded gas dataset with 9 types of gases and 64413 samples is used to validate the performance of the proposed feature extraction method and classifier. Simulation results show that this method can classify 9 different gases with an accuracy of 97.2%, which is comparable to the state-of-the-art works. Meanwhile, the parameters and the computation complexity are greatly reduced, which makes it suitable for long-term electronic noses with computation resource constraint." @default.
- W4309242556 created "2022-11-25" @default.
- W4309242556 creator A5011638218 @default.
- W4309242556 creator A5024076883 @default.
- W4309242556 creator A5054313007 @default.
- W4309242556 creator A5062989304 @default.
- W4309242556 creator A5063888012 @default.
- W4309242556 creator A5064530138 @default.
- W4309242556 creator A5066615058 @default.
- W4309242556 creator A5071273868 @default.
- W4309242556 date "2022-10-13" @default.
- W4309242556 modified "2023-10-18" @default.
- W4309242556 title "Resource Efficient Gas Classifier Based on 1.5-bit Quantization of Sensing Channel Difference for Electronic Nose" @default.
- W4309242556 cites W1641169336 @default.
- W4309242556 cites W1960277805 @default.
- W4309242556 cites W1973798705 @default.
- W4309242556 cites W1987864869 @default.
- W4309242556 cites W2071888887 @default.
- W4309242556 cites W2083934119 @default.
- W4309242556 cites W2091971808 @default.
- W4309242556 cites W2160950035 @default.
- W4309242556 cites W2197834483 @default.
- W4309242556 cites W2783662494 @default.
- W4309242556 cites W2886357685 @default.
- W4309242556 cites W2909368910 @default.
- W4309242556 cites W3099647611 @default.
- W4309242556 cites W4205919232 @default.
- W4309242556 doi "https://doi.org/10.1109/biocas54905.2022.9948652" @default.
- W4309242556 hasPublicationYear "2022" @default.
- W4309242556 type Work @default.
- W4309242556 citedByCount "1" @default.
- W4309242556 countsByYear W43092425562023 @default.
- W4309242556 crossrefType "proceedings-article" @default.
- W4309242556 hasAuthorship W4309242556A5011638218 @default.
- W4309242556 hasAuthorship W4309242556A5024076883 @default.
- W4309242556 hasAuthorship W4309242556A5054313007 @default.
- W4309242556 hasAuthorship W4309242556A5062989304 @default.
- W4309242556 hasAuthorship W4309242556A5063888012 @default.
- W4309242556 hasAuthorship W4309242556A5064530138 @default.
- W4309242556 hasAuthorship W4309242556A5066615058 @default.
- W4309242556 hasAuthorship W4309242556A5071273868 @default.
- W4309242556 hasConcept C11413529 @default.
- W4309242556 hasConcept C153180895 @default.
- W4309242556 hasConcept C154945302 @default.
- W4309242556 hasConcept C179799912 @default.
- W4309242556 hasConcept C23895516 @default.
- W4309242556 hasConcept C28855332 @default.
- W4309242556 hasConcept C41008148 @default.
- W4309242556 hasConcept C45374587 @default.
- W4309242556 hasConcept C50644808 @default.
- W4309242556 hasConcept C52622490 @default.
- W4309242556 hasConcept C95623464 @default.
- W4309242556 hasConceptScore W4309242556C11413529 @default.
- W4309242556 hasConceptScore W4309242556C153180895 @default.
- W4309242556 hasConceptScore W4309242556C154945302 @default.
- W4309242556 hasConceptScore W4309242556C179799912 @default.
- W4309242556 hasConceptScore W4309242556C23895516 @default.
- W4309242556 hasConceptScore W4309242556C28855332 @default.
- W4309242556 hasConceptScore W4309242556C41008148 @default.
- W4309242556 hasConceptScore W4309242556C45374587 @default.
- W4309242556 hasConceptScore W4309242556C50644808 @default.
- W4309242556 hasConceptScore W4309242556C52622490 @default.
- W4309242556 hasConceptScore W4309242556C95623464 @default.
- W4309242556 hasFunder F4320329860 @default.
- W4309242556 hasLocation W43092425561 @default.
- W4309242556 hasOpenAccess W4309242556 @default.
- W4309242556 hasPrimaryLocation W43092425561 @default.
- W4309242556 hasRelatedWork W2022996092 @default.
- W4309242556 hasRelatedWork W2188464267 @default.
- W4309242556 hasRelatedWork W2394228292 @default.
- W4309242556 hasRelatedWork W2545275226 @default.
- W4309242556 hasRelatedWork W2581311652 @default.
- W4309242556 hasRelatedWork W2784352036 @default.
- W4309242556 hasRelatedWork W2807311372 @default.
- W4309242556 hasRelatedWork W2905846897 @default.
- W4309242556 hasRelatedWork W2995914718 @default.
- W4309242556 hasRelatedWork W4367598285 @default.
- W4309242556 isParatext "false" @default.
- W4309242556 isRetracted "false" @default.
- W4309242556 workType "article" @default.