Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309246800> ?p ?o ?g. }
- W4309246800 endingPage "3344" @default.
- W4309246800 startingPage "3334" @default.
- W4309246800 abstract "ConspectusKnowing how nanomaterials nucleate and dynamically evolve at the nanoscale is crucial to understanding and in turn controlling the structure and properties of a wide variety of materials, among which single-walled carbon nanotubes (SWCNTs) with chirality-dependent properties is a typical example. Catalyst takes a central role in guiding the SWCNT growth. An in-depth understanding of the growth mechanism of SWCNTs requires knowledge of the catalyst dynamic behavior during the chemical vapor deposition process, where real-time atomic-scale observations are needed. The high spatial, temporal, and energy resolution makes the state-of-the-art aberration-corrected environmental transmission electron microscope (ETEM) a superior tool for tracking the catalyst evolution and the SWCNT growth.Several key factors and processes, including the catalyst stability, carbon diffusion pathway, nucleation site, and growth modes of nanotubes, greatly influence the structure of SWCNTs. This Account summarizes our recent progress in the ETEM investigation of the dynamic catalyst behavior and nucleation of SWCNTs. We first compare the different growth modes of SWCNTs on two types of catalyst-stable solid intermetallic Co7W6 and unstable monometallic catalysts. Then we address the origin of different growth modes and chirality selectivity by revealing the atomic-scale stability and evolution of catalysts under carbon feed conditions and the observation of the in situ growth of SWCNTs on catalysts. We also discuss the catalyst-support interaction and the possible influence on SWCNT growth. In the end, we summarize the present achievements and future challenges.We carefully compare the difference in the ordinary Co catalyst and Co7W6 catalyst which has shown great chirality selectivity in SWCNT growth. Direct imaging by ETEM demonstrated that solid catalysts initiated the growth of SWCNTs with diameters smaller (dNT) than those of the catalyst particles (dNP) (dNT < dNP), whereas molten catalyst nanoparticles produced SWCNTs with similar diameters (dNT ≈ dNP). ETEM combined with in situ synchrotron X-ray absorption spectroscopy demonstrated that the Co7W6 catalyst maintained a solid stable structure under carbon feed conditions at 700-1000 °C, demonstrating the feasibility in acting as a structure template to grow SWCNTs. By contrast, the state and composition of the Co catalyst were changing during SWCNT growth. The near-surface lattice spacings of Co7W6 remained unchanged under carbon feed condition with carbon diffusion on the surface, whereas the solid Co catalyst underwent dynamic expansion and contraction due to carbon penetration into and precipitation out of Co nanoparticles. These two different pathways of carbon diffusion on or in catalysts indicate the distinctly different growth mechanisms of SWCNTs: the epitaxial growth of SWCNTs with specified chirality on the facets of Co7W6 nanocrystals and the nonselective growth of SWCNTs by the Co catalyst with Co/CoC3 as the active species. Besides the SWCNT-catalyst interface, the catalyst-support interface is also of importance in SWCNT growth. The atomic-scale information on catalyst dynamics provides a deep mechanistic understanding of SWCNT growth and will boost the development of the structure-controlled synthesis of SWCNTs and other nanomaterials." @default.
- W4309246800 created "2022-11-25" @default.
- W4309246800 creator A5009849960 @default.
- W4309246800 creator A5018213636 @default.
- W4309246800 creator A5018975513 @default.
- W4309246800 creator A5057904713 @default.
- W4309246800 date "2022-11-17" @default.
- W4309246800 modified "2023-10-16" @default.
- W4309246800 title "Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes" @default.
- W4309246800 cites W1968051016 @default.
- W4309246800 cites W2004879086 @default.
- W4309246800 cites W2016465436 @default.
- W4309246800 cites W2034458047 @default.
- W4309246800 cites W2038139238 @default.
- W4309246800 cites W2075063433 @default.
- W4309246800 cites W2082904789 @default.
- W4309246800 cites W2083519729 @default.
- W4309246800 cites W2094422480 @default.
- W4309246800 cites W2112448497 @default.
- W4309246800 cites W2168350976 @default.
- W4309246800 cites W2308735475 @default.
- W4309246800 cites W2326529378 @default.
- W4309246800 cites W2399470235 @default.
- W4309246800 cites W2470380705 @default.
- W4309246800 cites W2488827451 @default.
- W4309246800 cites W2549980208 @default.
- W4309246800 cites W2551828015 @default.
- W4309246800 cites W2564463106 @default.
- W4309246800 cites W2587636719 @default.
- W4309246800 cites W2587918070 @default.
- W4309246800 cites W2594310154 @default.
- W4309246800 cites W2599974374 @default.
- W4309246800 cites W2605047439 @default.
- W4309246800 cites W2788518273 @default.
- W4309246800 cites W2794066751 @default.
- W4309246800 cites W2801790046 @default.
- W4309246800 cites W2887925947 @default.
- W4309246800 cites W2921302522 @default.
- W4309246800 cites W2946470039 @default.
- W4309246800 cites W2964024119 @default.
- W4309246800 cites W2991031151 @default.
- W4309246800 cites W3005639868 @default.
- W4309246800 cites W3091572635 @default.
- W4309246800 cites W3094212375 @default.
- W4309246800 cites W3095341647 @default.
- W4309246800 cites W3096730138 @default.
- W4309246800 cites W3108058712 @default.
- W4309246800 cites W3108125864 @default.
- W4309246800 cites W3118609165 @default.
- W4309246800 cites W3127906722 @default.
- W4309246800 cites W3137761030 @default.
- W4309246800 cites W3167433735 @default.
- W4309246800 cites W3195081014 @default.
- W4309246800 cites W3198476251 @default.
- W4309246800 cites W4207023355 @default.
- W4309246800 cites W4226036796 @default.
- W4309246800 cites W4229072590 @default.
- W4309246800 cites W4242899486 @default.
- W4309246800 cites W4283277499 @default.
- W4309246800 cites W4289890596 @default.
- W4309246800 cites W4297199053 @default.
- W4309246800 cites W4304694253 @default.
- W4309246800 cites W4306250058 @default.
- W4309246800 doi "https://doi.org/10.1021/acs.accounts.2c00592" @default.
- W4309246800 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36384282" @default.
- W4309246800 hasPublicationYear "2022" @default.
- W4309246800 type Work @default.
- W4309246800 citedByCount "13" @default.
- W4309246800 countsByYear W43092468002023 @default.
- W4309246800 crossrefType "journal-article" @default.
- W4309246800 hasAuthorship W4309246800A5009849960 @default.
- W4309246800 hasAuthorship W4309246800A5018213636 @default.
- W4309246800 hasAuthorship W4309246800A5018975513 @default.
- W4309246800 hasAuthorship W4309246800A5057904713 @default.
- W4309246800 hasConcept C121332964 @default.
- W4309246800 hasConcept C124668440 @default.
- W4309246800 hasConcept C127413603 @default.
- W4309246800 hasConcept C138631740 @default.
- W4309246800 hasConcept C146088050 @default.
- W4309246800 hasConcept C159467904 @default.
- W4309246800 hasConcept C161368742 @default.
- W4309246800 hasConcept C161790260 @default.
- W4309246800 hasConcept C171250308 @default.
- W4309246800 hasConcept C178790620 @default.
- W4309246800 hasConcept C185592680 @default.
- W4309246800 hasConcept C192562407 @default.
- W4309246800 hasConcept C20621625 @default.
- W4309246800 hasConcept C42360764 @default.
- W4309246800 hasConcept C45206210 @default.
- W4309246800 hasConcept C513720949 @default.
- W4309246800 hasConcept C52703039 @default.
- W4309246800 hasConcept C61048295 @default.
- W4309246800 hasConcept C62520636 @default.
- W4309246800 hasConcept C66823137 @default.
- W4309246800 hasConcept C7602139 @default.
- W4309246800 hasConceptScore W4309246800C121332964 @default.
- W4309246800 hasConceptScore W4309246800C124668440 @default.
- W4309246800 hasConceptScore W4309246800C127413603 @default.