Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309246876> ?p ?o ?g. }
- W4309246876 endingPage "245002" @default.
- W4309246876 startingPage "245002" @default.
- W4309246876 abstract "Objective: Gliomas are the most common primary brain tumors. Approximately 70% of the glioma patients diagnosed with glioblastoma have an averaged overall survival (OS) of only ∼16 months. Early survival prediction is essential for treatment decision-making in glioma patients. Here we proposed an ensemble learning approach to predict the post-operative OS of glioma patients using only pre-operative MRIs.Approach: Our dataset was from the Medical Image Computing and Computer Assisted Intervention Brain Tumor Segmentation challenge 2020, which consists of multimodal pre-operative MRI scans of 235 glioma patients with survival days recorded. The backbone of our approach was a Siamese network consisting of twinned ResNet-based feature extractors followed by a 3-layer classifier. During training, the feature extractors explored traits of intra and inter-class by minimizing contrastive loss of randomly paired 2D pre-operative MRIs, and the classifier utilized the extracted features to generate labels with cost defined by cross-entropy loss. During testing, the extracted features were also utilized to define distance between the test sample and the reference composed of training data, to generate an additional predictor via K-NN classification. The final label was the ensemble classification from both the Siamese model and the K-NN model.Main results: Our approach classifies the glioma patients into 3 OS classes: long-survivors (>15 months), mid-survivors (between 10 and 15 months) and short-survivors (<10 months). The performance is assessed by the accuracy (ACC) and the area under the curve (AUC) of 3-class classification. The final result achieved an ACC of 65.22% and AUC of 0.81.Significance: Our Siamese network based ensemble learning approach demonstrated promising ability in mining discriminative features with minimal manual processing and generalization requirement. This prediction strategy can be potentially applied to assist timely clinical decision-making." @default.
- W4309246876 created "2022-11-25" @default.
- W4309246876 creator A5008786092 @default.
- W4309246876 creator A5017116858 @default.
- W4309246876 creator A5056062141 @default.
- W4309246876 creator A5059684522 @default.
- W4309246876 creator A5060464914 @default.
- W4309246876 creator A5068359755 @default.
- W4309246876 creator A5071400654 @default.
- W4309246876 creator A5073447045 @default.
- W4309246876 creator A5080370589 @default.
- W4309246876 creator A5089791635 @default.
- W4309246876 date "2022-12-06" @default.
- W4309246876 modified "2023-09-28" @default.
- W4309246876 title "Ensemble learning for glioma patients overall survival prediction using pre-operative MRIs" @default.
- W4309246876 cites W1641498739 @default.
- W4309246876 cites W1893588436 @default.
- W4309246876 cites W2036044314 @default.
- W4309246876 cites W2075428062 @default.
- W4309246876 cites W2096287682 @default.
- W4309246876 cites W2097475056 @default.
- W4309246876 cites W2152025703 @default.
- W4309246876 cites W2160382843 @default.
- W4309246876 cites W2272888082 @default.
- W4309246876 cites W2341890933 @default.
- W4309246876 cites W2346062709 @default.
- W4309246876 cites W2461805626 @default.
- W4309246876 cites W2725497823 @default.
- W4309246876 cites W2751069891 @default.
- W4309246876 cites W2761668583 @default.
- W4309246876 cites W2808480572 @default.
- W4309246876 cites W2912884588 @default.
- W4309246876 cites W2951553997 @default.
- W4309246876 cites W2956891907 @default.
- W4309246876 cites W2967184931 @default.
- W4309246876 cites W2968254841 @default.
- W4309246876 cites W2981528462 @default.
- W4309246876 cites W2999106318 @default.
- W4309246876 cites W3011334092 @default.
- W4309246876 cites W3015500759 @default.
- W4309246876 cites W3017440719 @default.
- W4309246876 cites W3034887296 @default.
- W4309246876 cites W3112701542 @default.
- W4309246876 cites W3124614752 @default.
- W4309246876 cites W3186663928 @default.
- W4309246876 cites W4200310378 @default.
- W4309246876 doi "https://doi.org/10.1088/1361-6560/aca375" @default.
- W4309246876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36384039" @default.
- W4309246876 hasPublicationYear "2022" @default.
- W4309246876 type Work @default.
- W4309246876 citedByCount "0" @default.
- W4309246876 crossrefType "journal-article" @default.
- W4309246876 hasAuthorship W4309246876A5008786092 @default.
- W4309246876 hasAuthorship W4309246876A5017116858 @default.
- W4309246876 hasAuthorship W4309246876A5056062141 @default.
- W4309246876 hasAuthorship W4309246876A5059684522 @default.
- W4309246876 hasAuthorship W4309246876A5060464914 @default.
- W4309246876 hasAuthorship W4309246876A5068359755 @default.
- W4309246876 hasAuthorship W4309246876A5071400654 @default.
- W4309246876 hasAuthorship W4309246876A5073447045 @default.
- W4309246876 hasAuthorship W4309246876A5080370589 @default.
- W4309246876 hasAuthorship W4309246876A5089791635 @default.
- W4309246876 hasConcept C126838900 @default.
- W4309246876 hasConcept C142724271 @default.
- W4309246876 hasConcept C153180895 @default.
- W4309246876 hasConcept C154945302 @default.
- W4309246876 hasConcept C204232928 @default.
- W4309246876 hasConcept C2776194525 @default.
- W4309246876 hasConcept C2778227246 @default.
- W4309246876 hasConcept C3019822344 @default.
- W4309246876 hasConcept C41008148 @default.
- W4309246876 hasConcept C45942800 @default.
- W4309246876 hasConcept C502942594 @default.
- W4309246876 hasConcept C71924100 @default.
- W4309246876 hasConcept C89600930 @default.
- W4309246876 hasConcept C95623464 @default.
- W4309246876 hasConceptScore W4309246876C126838900 @default.
- W4309246876 hasConceptScore W4309246876C142724271 @default.
- W4309246876 hasConceptScore W4309246876C153180895 @default.
- W4309246876 hasConceptScore W4309246876C154945302 @default.
- W4309246876 hasConceptScore W4309246876C204232928 @default.
- W4309246876 hasConceptScore W4309246876C2776194525 @default.
- W4309246876 hasConceptScore W4309246876C2778227246 @default.
- W4309246876 hasConceptScore W4309246876C3019822344 @default.
- W4309246876 hasConceptScore W4309246876C41008148 @default.
- W4309246876 hasConceptScore W4309246876C45942800 @default.
- W4309246876 hasConceptScore W4309246876C502942594 @default.
- W4309246876 hasConceptScore W4309246876C71924100 @default.
- W4309246876 hasConceptScore W4309246876C89600930 @default.
- W4309246876 hasConceptScore W4309246876C95623464 @default.
- W4309246876 hasFunder F4320332161 @default.
- W4309246876 hasFunder F4320337351 @default.
- W4309246876 hasIssue "24" @default.
- W4309246876 hasLocation W43092468761 @default.
- W4309246876 hasLocation W43092468762 @default.
- W4309246876 hasOpenAccess W4309246876 @default.
- W4309246876 hasPrimaryLocation W43092468761 @default.
- W4309246876 hasRelatedWork W1507687735 @default.