Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309263212> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4309263212 abstract "The surging demand for power usage in the last two decades has increased exponentially, mostly in the building sector, due to people's high standard of living. The energy usage of a building is dependent on various surrounding parameters like temperature, humidity, appliance usage, and many more. Temperature forecasting inside smart building premises may reduce energy consumption as well as other associated factors. In our current research work, we have used different models based on internet of things (IoT) data for the estimation of indoor temperature. The data for this work has been collected from temperature sensors deployed inside smart buildings. For prediction, we have used various models (ARIMA, SARIMAX, and LSTM). Applying a single model along with collected data may not be efficient for accurate prediction. Therefore, the present research proposes a FUSION approach, i.e., a combination of (ARIMA, SARIMAX, and LSTM) for more accurate temperature prediction. The evaluation criteria of the proposed model are based on the MAPE (Mean Absolute Percentage Error) and MSE (Mean Squared Error) metrics. The values are compared for each individual and the proposed model to get the lowest error rate of prediction. Even though the results of other models showed a good forecast, the FUSION approach did much better than other models, which shows how well this research was done." @default.
- W4309263212 created "2022-11-25" @default.
- W4309263212 creator A5004401828 @default.
- W4309263212 creator A5013076376 @default.
- W4309263212 creator A5024491662 @default.
- W4309263212 creator A5029693326 @default.
- W4309263212 creator A5080601972 @default.
- W4309263212 date "2022-10-06" @default.
- W4309263212 modified "2023-10-02" @default.
- W4309263212 title "Forecasting indoor temperature for smart buildings with ARIMA, SARIMAX, and LSTM: A fusion approach" @default.
- W4309263212 cites W1668312308 @default.
- W4309263212 cites W2020960725 @default.
- W4309263212 cites W2076170369 @default.
- W4309263212 cites W2619218237 @default.
- W4309263212 cites W2624688674 @default.
- W4309263212 cites W2787257507 @default.
- W4309263212 cites W2943921667 @default.
- W4309263212 cites W3041462918 @default.
- W4309263212 cites W3127785284 @default.
- W4309263212 doi "https://doi.org/10.23919/eecsi56542.2022.9946498" @default.
- W4309263212 hasPublicationYear "2022" @default.
- W4309263212 type Work @default.
- W4309263212 citedByCount "1" @default.
- W4309263212 countsByYear W43092632122022 @default.
- W4309263212 crossrefType "proceedings-article" @default.
- W4309263212 hasAuthorship W4309263212A5004401828 @default.
- W4309263212 hasAuthorship W4309263212A5013076376 @default.
- W4309263212 hasAuthorship W4309263212A5024491662 @default.
- W4309263212 hasAuthorship W4309263212A5029693326 @default.
- W4309263212 hasAuthorship W4309263212A5080601972 @default.
- W4309263212 hasConcept C105795698 @default.
- W4309263212 hasConcept C119857082 @default.
- W4309263212 hasConcept C124101348 @default.
- W4309263212 hasConcept C127413603 @default.
- W4309263212 hasConcept C139945424 @default.
- W4309263212 hasConcept C149635348 @default.
- W4309263212 hasConcept C150217764 @default.
- W4309263212 hasConcept C151406439 @default.
- W4309263212 hasConcept C18762648 @default.
- W4309263212 hasConcept C24338571 @default.
- W4309263212 hasConcept C33923547 @default.
- W4309263212 hasConcept C33954974 @default.
- W4309263212 hasConcept C41008148 @default.
- W4309263212 hasConcept C45804977 @default.
- W4309263212 hasConcept C50644808 @default.
- W4309263212 hasConcept C78519656 @default.
- W4309263212 hasConcept C81860439 @default.
- W4309263212 hasConceptScore W4309263212C105795698 @default.
- W4309263212 hasConceptScore W4309263212C119857082 @default.
- W4309263212 hasConceptScore W4309263212C124101348 @default.
- W4309263212 hasConceptScore W4309263212C127413603 @default.
- W4309263212 hasConceptScore W4309263212C139945424 @default.
- W4309263212 hasConceptScore W4309263212C149635348 @default.
- W4309263212 hasConceptScore W4309263212C150217764 @default.
- W4309263212 hasConceptScore W4309263212C151406439 @default.
- W4309263212 hasConceptScore W4309263212C18762648 @default.
- W4309263212 hasConceptScore W4309263212C24338571 @default.
- W4309263212 hasConceptScore W4309263212C33923547 @default.
- W4309263212 hasConceptScore W4309263212C33954974 @default.
- W4309263212 hasConceptScore W4309263212C41008148 @default.
- W4309263212 hasConceptScore W4309263212C45804977 @default.
- W4309263212 hasConceptScore W4309263212C50644808 @default.
- W4309263212 hasConceptScore W4309263212C78519656 @default.
- W4309263212 hasConceptScore W4309263212C81860439 @default.
- W4309263212 hasLocation W43092632121 @default.
- W4309263212 hasOpenAccess W4309263212 @default.
- W4309263212 hasPrimaryLocation W43092632121 @default.
- W4309263212 hasRelatedWork W2052669361 @default.
- W4309263212 hasRelatedWork W2305568609 @default.
- W4309263212 hasRelatedWork W2778123278 @default.
- W4309263212 hasRelatedWork W2889516516 @default.
- W4309263212 hasRelatedWork W3186873483 @default.
- W4309263212 hasRelatedWork W3210053092 @default.
- W4309263212 hasRelatedWork W4207046107 @default.
- W4309263212 hasRelatedWork W4307874644 @default.
- W4309263212 hasRelatedWork W4321460289 @default.
- W4309263212 hasRelatedWork W4323316459 @default.
- W4309263212 isParatext "false" @default.
- W4309263212 isRetracted "false" @default.
- W4309263212 workType "article" @default.