Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309263281> ?p ?o ?g. }
- W4309263281 abstract "Emotion Recognition using EEG signals remains a challenging task. Usually, feature extraction and channel selection are determined based on neuro-scientific assumptions. Too many features during the EEG-based human emotion recognition will lead to reduced classification accuracy and consume high computational costs. This study analyzes time and frequency domain features such as Mean, Mean Absolute Value, Standard Deviation, and Power Spectral Density. In this study, an EEG Recording session involved 25 subjects consisting of 12 males and 13 females. Video with two emotions, happy and sad, were stimulated to the subjects. The electrodes were placed in channels F7, F8, FP1, and FP2 based on the 10/20 EEG system. The EEG pre-processing, such as signal filtering, Automatic Artifact Removal EOG, Artifact Subspace Reconstruction, and Independent Component Analysis, were done using MATLAB Toolbox, followed by Infinite Impulse Response with Butterworth was applied to separate the EEG signal into alpha, beta, and gamma sub-band. Therefore, 48 numbers of features were extracted to perform emotion recognition. Mutual Information is used for calculating the degree of importance of each feature. Then, the features were ranked to eliminate features with a minimal contribution. We implemented a Random Forest algorithm to classify human emotions based on the EEG signal. The experimental results show that reducing the number of utilized features from 48 to 12 can increase the accuracy score from 82.61 % to 95.65 %." @default.
- W4309263281 created "2022-11-25" @default.
- W4309263281 creator A5007342197 @default.
- W4309263281 creator A5012532332 @default.
- W4309263281 creator A5057665861 @default.
- W4309263281 creator A5057857410 @default.
- W4309263281 creator A5064494829 @default.
- W4309263281 creator A5078051957 @default.
- W4309263281 date "2022-10-06" @default.
- W4309263281 modified "2023-09-26" @default.
- W4309263281 title "Time and Frequency Domain Feature Selection Using Mutual Information for EEG-based Emotion Recognition" @default.
- W4309263281 cites W1930624869 @default.
- W4309263281 cites W2054294508 @default.
- W4309263281 cites W2291099287 @default.
- W4309263281 cites W2410238113 @default.
- W4309263281 cites W2789438342 @default.
- W4309263281 cites W2806925798 @default.
- W4309263281 cites W2941401350 @default.
- W4309263281 cites W2982660304 @default.
- W4309263281 cites W3000208505 @default.
- W4309263281 cites W3001041458 @default.
- W4309263281 cites W3045518516 @default.
- W4309263281 cites W3088970435 @default.
- W4309263281 cites W3129726290 @default.
- W4309263281 cites W3153380589 @default.
- W4309263281 cites W3156005160 @default.
- W4309263281 cites W3164999323 @default.
- W4309263281 cites W3175913874 @default.
- W4309263281 cites W3181731900 @default.
- W4309263281 cites W3201864917 @default.
- W4309263281 cites W4200406972 @default.
- W4309263281 cites W4206821030 @default.
- W4309263281 cites W4210252670 @default.
- W4309263281 cites W4300906944 @default.
- W4309263281 doi "https://doi.org/10.23919/eecsi56542.2022.9946522" @default.
- W4309263281 hasPublicationYear "2022" @default.
- W4309263281 type Work @default.
- W4309263281 citedByCount "0" @default.
- W4309263281 crossrefType "proceedings-article" @default.
- W4309263281 hasAuthorship W4309263281A5007342197 @default.
- W4309263281 hasAuthorship W4309263281A5012532332 @default.
- W4309263281 hasAuthorship W4309263281A5057665861 @default.
- W4309263281 hasAuthorship W4309263281A5057857410 @default.
- W4309263281 hasAuthorship W4309263281A5064494829 @default.
- W4309263281 hasAuthorship W4309263281A5078051957 @default.
- W4309263281 hasConcept C103824480 @default.
- W4309263281 hasConcept C105795698 @default.
- W4309263281 hasConcept C118552586 @default.
- W4309263281 hasConcept C138885662 @default.
- W4309263281 hasConcept C148483581 @default.
- W4309263281 hasConcept C153180895 @default.
- W4309263281 hasConcept C154945302 @default.
- W4309263281 hasConcept C15744967 @default.
- W4309263281 hasConcept C169258074 @default.
- W4309263281 hasConcept C19118579 @default.
- W4309263281 hasConcept C22679943 @default.
- W4309263281 hasConcept C2776401178 @default.
- W4309263281 hasConcept C2779010991 @default.
- W4309263281 hasConcept C28490314 @default.
- W4309263281 hasConcept C31972630 @default.
- W4309263281 hasConcept C33923547 @default.
- W4309263281 hasConcept C41008148 @default.
- W4309263281 hasConcept C41895202 @default.
- W4309263281 hasConcept C51432778 @default.
- W4309263281 hasConcept C522805319 @default.
- W4309263281 hasConcept C52622490 @default.
- W4309263281 hasConceptScore W4309263281C103824480 @default.
- W4309263281 hasConceptScore W4309263281C105795698 @default.
- W4309263281 hasConceptScore W4309263281C118552586 @default.
- W4309263281 hasConceptScore W4309263281C138885662 @default.
- W4309263281 hasConceptScore W4309263281C148483581 @default.
- W4309263281 hasConceptScore W4309263281C153180895 @default.
- W4309263281 hasConceptScore W4309263281C154945302 @default.
- W4309263281 hasConceptScore W4309263281C15744967 @default.
- W4309263281 hasConceptScore W4309263281C169258074 @default.
- W4309263281 hasConceptScore W4309263281C19118579 @default.
- W4309263281 hasConceptScore W4309263281C22679943 @default.
- W4309263281 hasConceptScore W4309263281C2776401178 @default.
- W4309263281 hasConceptScore W4309263281C2779010991 @default.
- W4309263281 hasConceptScore W4309263281C28490314 @default.
- W4309263281 hasConceptScore W4309263281C31972630 @default.
- W4309263281 hasConceptScore W4309263281C33923547 @default.
- W4309263281 hasConceptScore W4309263281C41008148 @default.
- W4309263281 hasConceptScore W4309263281C41895202 @default.
- W4309263281 hasConceptScore W4309263281C51432778 @default.
- W4309263281 hasConceptScore W4309263281C522805319 @default.
- W4309263281 hasConceptScore W4309263281C52622490 @default.
- W4309263281 hasLocation W43092632811 @default.
- W4309263281 hasOpenAccess W4309263281 @default.
- W4309263281 hasPrimaryLocation W43092632811 @default.
- W4309263281 hasRelatedWork W1675383653 @default.
- W4309263281 hasRelatedWork W1995149556 @default.
- W4309263281 hasRelatedWork W2107517649 @default.
- W4309263281 hasRelatedWork W2117041729 @default.
- W4309263281 hasRelatedWork W2365346975 @default.
- W4309263281 hasRelatedWork W2385132419 @default.
- W4309263281 hasRelatedWork W2546942002 @default.
- W4309263281 hasRelatedWork W2592385986 @default.
- W4309263281 hasRelatedWork W3185455591 @default.
- W4309263281 hasRelatedWork W2345184372 @default.