Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309263448> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4309263448 abstract "The Key Social Disability Policy (PSBB) requires highly mobile people to use the PeduliLindungi application. One application has several reviews from positive and negative users. Review data can be labeled with two types of emotions: negative sentiment and positive sentiment. Fine-grained sentiment analysis is a type of sentiment analysis that can be used to identify user reactions. One method of sentiment analysis is Multinomial Naïve Bayes. In this research, we used Multinomial Naïve Bayes to perform fine-grained sentiment analysis for users of the PeduliLindungi application. The data used is from the Google Play store. The sentiment class labeling results for the PeduliLindungi review data resulted in 9021 reviews, including a total of 6244 negative reviews and 2777 positive reviews. This research uses a data-sharing model that divides 80% of training data and 20% of test data. Many data imbalances for the two sentiment classes can be overcome by using the SMOTE method. SMOTE has been shown to improve classification accuracy more effectively than non-SMOTE, as applying SMOTE has been shown to improve the performance of imbalanced data. The proper classification method used to classify PeduliLindungi's user ratings is Multinomial Naïve Bayes-SMOTE, which has the highest AUC value." @default.
- W4309263448 created "2022-11-25" @default.
- W4309263448 creator A5069889902 @default.
- W4309263448 creator A5087531029 @default.
- W4309263448 date "2022-10-06" @default.
- W4309263448 modified "2023-09-23" @default.
- W4309263448 title "Fine-Grained Sentiment Analysis on PeduliLindungi Application Users with Multinomial Naive Bayes-SMOTE" @default.
- W4309263448 cites W1984865079 @default.
- W4309263448 cites W2012070465 @default.
- W4309263448 cites W2019443959 @default.
- W4309263448 cites W2119191234 @default.
- W4309263448 cites W2148143831 @default.
- W4309263448 cites W2161151719 @default.
- W4309263448 cites W2921140414 @default.
- W4309263448 cites W2969923970 @default.
- W4309263448 cites W3039551013 @default.
- W4309263448 cites W3127185659 @default.
- W4309263448 cites W4243703331 @default.
- W4309263448 cites W571200655 @default.
- W4309263448 doi "https://doi.org/10.23919/eecsi56542.2022.9946469" @default.
- W4309263448 hasPublicationYear "2022" @default.
- W4309263448 type Work @default.
- W4309263448 citedByCount "0" @default.
- W4309263448 crossrefType "proceedings-article" @default.
- W4309263448 hasAuthorship W4309263448A5069889902 @default.
- W4309263448 hasAuthorship W4309263448A5087531029 @default.
- W4309263448 hasConcept C105795698 @default.
- W4309263448 hasConcept C107673813 @default.
- W4309263448 hasConcept C119857082 @default.
- W4309263448 hasConcept C12267149 @default.
- W4309263448 hasConcept C124101348 @default.
- W4309263448 hasConcept C154945302 @default.
- W4309263448 hasConcept C192065140 @default.
- W4309263448 hasConcept C207201462 @default.
- W4309263448 hasConcept C2777212361 @default.
- W4309263448 hasConcept C33923547 @default.
- W4309263448 hasConcept C41008148 @default.
- W4309263448 hasConcept C52001869 @default.
- W4309263448 hasConcept C66402592 @default.
- W4309263448 hasConceptScore W4309263448C105795698 @default.
- W4309263448 hasConceptScore W4309263448C107673813 @default.
- W4309263448 hasConceptScore W4309263448C119857082 @default.
- W4309263448 hasConceptScore W4309263448C12267149 @default.
- W4309263448 hasConceptScore W4309263448C124101348 @default.
- W4309263448 hasConceptScore W4309263448C154945302 @default.
- W4309263448 hasConceptScore W4309263448C192065140 @default.
- W4309263448 hasConceptScore W4309263448C207201462 @default.
- W4309263448 hasConceptScore W4309263448C2777212361 @default.
- W4309263448 hasConceptScore W4309263448C33923547 @default.
- W4309263448 hasConceptScore W4309263448C41008148 @default.
- W4309263448 hasConceptScore W4309263448C52001869 @default.
- W4309263448 hasConceptScore W4309263448C66402592 @default.
- W4309263448 hasLocation W43092634481 @default.
- W4309263448 hasOpenAccess W4309263448 @default.
- W4309263448 hasPrimaryLocation W43092634481 @default.
- W4309263448 hasRelatedWork W2741836081 @default.
- W4309263448 hasRelatedWork W2774493118 @default.
- W4309263448 hasRelatedWork W3213901898 @default.
- W4309263448 hasRelatedWork W4211165872 @default.
- W4309263448 hasRelatedWork W4281608370 @default.
- W4309263448 hasRelatedWork W4308404643 @default.
- W4309263448 hasRelatedWork W4312926101 @default.
- W4309263448 hasRelatedWork W4327531511 @default.
- W4309263448 hasRelatedWork W4327831767 @default.
- W4309263448 hasRelatedWork W4362613237 @default.
- W4309263448 isParatext "false" @default.
- W4309263448 isRetracted "false" @default.
- W4309263448 workType "article" @default.