Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309265084> ?p ?o ?g. }
- W4309265084 endingPage "3983" @default.
- W4309265084 startingPage "3970" @default.
- W4309265084 abstract "The purity of sorghum varieties is an important indicator of the quality of raw materials used in the distillation of liquors. Different varieties of sorghum may be mixed during the acquisition process, which will affect the flavor and quality of liquor. To facilitate the rapid identification of sorghum varieties, this study proposes a sorghum variety identification model using hyperspectral imaging (HSI) technology combined with convolutional neural network (AlexNet).First, the watershed algorithm, which was modified with the extended-maxim transform, was used to segment the hyperspectral images of a single sorghum grain. The isolated forest algorithm was used to eliminate abnormal spectral data from the complete spectral data. Secondly, the AlexNet model of sorghum variety identification was established based on the two-dimensional gray image data of sorghum grain in group 1. The effects of different preprocessing methods and different convolution kernel sizes on the performance of the AlexNet model were discussed. The eigenvalues of the last layer of the AlexNet model were visualized using the t-distributed random neighborhood embedding method, which is used to evaluate the separability of features extracted by the AlexNet model. The performance differences between the optimal AlexNet model and traditional machine learning models for sorghum variety identification were compared. Finally, the varieties of sorghum grains in groups 2 and 3 were identified based on the optimal AlexNet model, and the average accuracy values of the test set reached 95.62% and 95.91% respectively.The results in this study demonstrated that HSI combined with the AlexNet model could provide a feasible technical approach for the detection of sorghum varieties. © 2022 Society of Chemical Industry." @default.
- W4309265084 created "2022-11-25" @default.
- W4309265084 creator A5004874624 @default.
- W4309265084 creator A5011822193 @default.
- W4309265084 creator A5022634051 @default.
- W4309265084 creator A5024010764 @default.
- W4309265084 creator A5031842721 @default.
- W4309265084 creator A5046756455 @default.
- W4309265084 creator A5064954907 @default.
- W4309265084 date "2022-11-29" @default.
- W4309265084 modified "2023-10-07" @default.
- W4309265084 title "Rapid nondestructive detecting of sorghum varieties based on hyperspectral imaging and convolutional neural network" @default.
- W4309265084 cites W2012358846 @default.
- W4309265084 cites W2045256553 @default.
- W4309265084 cites W2097092275 @default.
- W4309265084 cites W2116244722 @default.
- W4309265084 cites W2142894633 @default.
- W4309265084 cites W2548878763 @default.
- W4309265084 cites W2614326984 @default.
- W4309265084 cites W2618530766 @default.
- W4309265084 cites W2885116105 @default.
- W4309265084 cites W2948012532 @default.
- W4309265084 cites W2978720004 @default.
- W4309265084 cites W3005184963 @default.
- W4309265084 cites W3028231515 @default.
- W4309265084 cites W3035611289 @default.
- W4309265084 cites W3036170986 @default.
- W4309265084 cites W3037309279 @default.
- W4309265084 cites W3043585825 @default.
- W4309265084 cites W3085597046 @default.
- W4309265084 cites W3124859927 @default.
- W4309265084 cites W3159056856 @default.
- W4309265084 cites W3172630748 @default.
- W4309265084 cites W4200624638 @default.
- W4309265084 cites W4220906734 @default.
- W4309265084 cites W4283163067 @default.
- W4309265084 cites W4283521602 @default.
- W4309265084 cites W4284989591 @default.
- W4309265084 cites W4285801524 @default.
- W4309265084 cites W4288068934 @default.
- W4309265084 cites W4289794259 @default.
- W4309265084 cites W4290708182 @default.
- W4309265084 cites W4297896125 @default.
- W4309265084 doi "https://doi.org/10.1002/jsfa.12344" @default.
- W4309265084 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36397181" @default.
- W4309265084 hasPublicationYear "2022" @default.
- W4309265084 type Work @default.
- W4309265084 citedByCount "1" @default.
- W4309265084 countsByYear W43092650842023 @default.
- W4309265084 crossrefType "journal-article" @default.
- W4309265084 hasAuthorship W4309265084A5004874624 @default.
- W4309265084 hasAuthorship W4309265084A5011822193 @default.
- W4309265084 hasAuthorship W4309265084A5022634051 @default.
- W4309265084 hasAuthorship W4309265084A5024010764 @default.
- W4309265084 hasAuthorship W4309265084A5031842721 @default.
- W4309265084 hasAuthorship W4309265084A5046756455 @default.
- W4309265084 hasAuthorship W4309265084A5064954907 @default.
- W4309265084 hasConcept C114614502 @default.
- W4309265084 hasConcept C153180895 @default.
- W4309265084 hasConcept C154945302 @default.
- W4309265084 hasConcept C159078339 @default.
- W4309265084 hasConcept C2778157034 @default.
- W4309265084 hasConcept C33923547 @default.
- W4309265084 hasConcept C34736171 @default.
- W4309265084 hasConcept C41008148 @default.
- W4309265084 hasConcept C6557445 @default.
- W4309265084 hasConcept C74193536 @default.
- W4309265084 hasConcept C81363708 @default.
- W4309265084 hasConcept C86803240 @default.
- W4309265084 hasConceptScore W4309265084C114614502 @default.
- W4309265084 hasConceptScore W4309265084C153180895 @default.
- W4309265084 hasConceptScore W4309265084C154945302 @default.
- W4309265084 hasConceptScore W4309265084C159078339 @default.
- W4309265084 hasConceptScore W4309265084C2778157034 @default.
- W4309265084 hasConceptScore W4309265084C33923547 @default.
- W4309265084 hasConceptScore W4309265084C34736171 @default.
- W4309265084 hasConceptScore W4309265084C41008148 @default.
- W4309265084 hasConceptScore W4309265084C6557445 @default.
- W4309265084 hasConceptScore W4309265084C74193536 @default.
- W4309265084 hasConceptScore W4309265084C81363708 @default.
- W4309265084 hasConceptScore W4309265084C86803240 @default.
- W4309265084 hasFunder F4320313796 @default.
- W4309265084 hasFunder F4320322947 @default.
- W4309265084 hasIssue "8" @default.
- W4309265084 hasLocation W43092650841 @default.
- W4309265084 hasLocation W43092650842 @default.
- W4309265084 hasOpenAccess W4309265084 @default.
- W4309265084 hasPrimaryLocation W43092650841 @default.
- W4309265084 hasRelatedWork W1869808405 @default.
- W4309265084 hasRelatedWork W2028628118 @default.
- W4309265084 hasRelatedWork W2773352017 @default.
- W4309265084 hasRelatedWork W2781623059 @default.
- W4309265084 hasRelatedWork W2783789044 @default.
- W4309265084 hasRelatedWork W2807839383 @default.
- W4309265084 hasRelatedWork W2977314777 @default.
- W4309265084 hasRelatedWork W3006465478 @default.
- W4309265084 hasRelatedWork W3173596272 @default.
- W4309265084 hasRelatedWork W3211035526 @default.