Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309267112> ?p ?o ?g. }
- W4309267112 endingPage "720" @default.
- W4309267112 startingPage "720" @default.
- W4309267112 abstract "Space vehicles’ real-time trajectory optimization is the key to future automatic guidance. Still, the current sequential convex programming (SCP) method suffers from a low convergence rate and poor real-time performance when dealing with complex obstacle avoidance constraints (OACs). Given the above challenges, this work combines homotopy and neural network techniques with SCP to propose an innovative algorithm. Firstly, a neural network was used to fit the minimum signed distance field at obstacles’ different “growth” states to represent the OACs. Then, the network was embedded with the SCP framework, thus smoothly transforming the OACs from simple to complex. Numerical simulations showed that the proposed algorithm can efficiently deal with trajectory optimization under complex OACs such as a “maze”, and the algorithm has a high convergence rate and flexible extensibility." @default.
- W4309267112 created "2022-11-25" @default.
- W4309267112 creator A5020436470 @default.
- W4309267112 creator A5061715820 @default.
- W4309267112 creator A5067549687 @default.
- W4309267112 creator A5074583271 @default.
- W4309267112 date "2022-11-16" @default.
- W4309267112 modified "2023-10-15" @default.
- W4309267112 title "Trajectory Optimization with Complex Obstacle Avoidance Constraints via Homotopy Network Sequential Convex Programming" @default.
- W4309267112 cites W2006455928 @default.
- W4309267112 cites W2019965290 @default.
- W4309267112 cites W2038818107 @default.
- W4309267112 cites W2062731992 @default.
- W4309267112 cites W2098375154 @default.
- W4309267112 cites W2099893201 @default.
- W4309267112 cites W2103496339 @default.
- W4309267112 cites W2125240595 @default.
- W4309267112 cites W2129516068 @default.
- W4309267112 cites W2137983211 @default.
- W4309267112 cites W2147963686 @default.
- W4309267112 cites W2148878340 @default.
- W4309267112 cites W2557151383 @default.
- W4309267112 cites W2744091781 @default.
- W4309267112 cites W2773775572 @default.
- W4309267112 cites W2793574349 @default.
- W4309267112 cites W2794201647 @default.
- W4309267112 cites W2909966514 @default.
- W4309267112 cites W2967267347 @default.
- W4309267112 cites W2980473197 @default.
- W4309267112 cites W2997138311 @default.
- W4309267112 cites W3004180680 @default.
- W4309267112 cites W3007933137 @default.
- W4309267112 cites W3010668498 @default.
- W4309267112 cites W3035175169 @default.
- W4309267112 cites W3080523054 @default.
- W4309267112 cites W3102244603 @default.
- W4309267112 cites W3103328654 @default.
- W4309267112 cites W3208343212 @default.
- W4309267112 cites W4206138215 @default.
- W4309267112 cites W4220929154 @default.
- W4309267112 cites W4223563737 @default.
- W4309267112 cites W4229007520 @default.
- W4309267112 cites W4290704617 @default.
- W4309267112 cites W4292547776 @default.
- W4309267112 cites W4293248711 @default.
- W4309267112 cites W4295883465 @default.
- W4309267112 cites W4297268477 @default.
- W4309267112 doi "https://doi.org/10.3390/aerospace9110720" @default.
- W4309267112 hasPublicationYear "2022" @default.
- W4309267112 type Work @default.
- W4309267112 citedByCount "2" @default.
- W4309267112 countsByYear W43092671122023 @default.
- W4309267112 crossrefType "journal-article" @default.
- W4309267112 hasAuthorship W4309267112A5020436470 @default.
- W4309267112 hasAuthorship W4309267112A5061715820 @default.
- W4309267112 hasAuthorship W4309267112A5067549687 @default.
- W4309267112 hasAuthorship W4309267112A5074583271 @default.
- W4309267112 hasBestOaLocation W43092671121 @default.
- W4309267112 hasConcept C112680207 @default.
- W4309267112 hasConcept C121332964 @default.
- W4309267112 hasConcept C126255220 @default.
- W4309267112 hasConcept C1276947 @default.
- W4309267112 hasConcept C13662910 @default.
- W4309267112 hasConcept C154945302 @default.
- W4309267112 hasConcept C157972887 @default.
- W4309267112 hasConcept C162324750 @default.
- W4309267112 hasConcept C173246807 @default.
- W4309267112 hasConcept C19966478 @default.
- W4309267112 hasConcept C202444582 @default.
- W4309267112 hasConcept C2524010 @default.
- W4309267112 hasConcept C26517878 @default.
- W4309267112 hasConcept C2777303404 @default.
- W4309267112 hasConcept C33923547 @default.
- W4309267112 hasConcept C38652104 @default.
- W4309267112 hasConcept C41008148 @default.
- W4309267112 hasConcept C50522688 @default.
- W4309267112 hasConcept C50644808 @default.
- W4309267112 hasConcept C57869625 @default.
- W4309267112 hasConcept C5961521 @default.
- W4309267112 hasConcept C6683253 @default.
- W4309267112 hasConcept C90509273 @default.
- W4309267112 hasConcept C91575142 @default.
- W4309267112 hasConceptScore W4309267112C112680207 @default.
- W4309267112 hasConceptScore W4309267112C121332964 @default.
- W4309267112 hasConceptScore W4309267112C126255220 @default.
- W4309267112 hasConceptScore W4309267112C1276947 @default.
- W4309267112 hasConceptScore W4309267112C13662910 @default.
- W4309267112 hasConceptScore W4309267112C154945302 @default.
- W4309267112 hasConceptScore W4309267112C157972887 @default.
- W4309267112 hasConceptScore W4309267112C162324750 @default.
- W4309267112 hasConceptScore W4309267112C173246807 @default.
- W4309267112 hasConceptScore W4309267112C19966478 @default.
- W4309267112 hasConceptScore W4309267112C202444582 @default.
- W4309267112 hasConceptScore W4309267112C2524010 @default.
- W4309267112 hasConceptScore W4309267112C26517878 @default.
- W4309267112 hasConceptScore W4309267112C2777303404 @default.
- W4309267112 hasConceptScore W4309267112C33923547 @default.
- W4309267112 hasConceptScore W4309267112C38652104 @default.