Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309268410> ?p ?o ?g. }
- W4309268410 endingPage "1158" @default.
- W4309268410 startingPage "1145" @default.
- W4309268410 abstract "Accurate time series prediction techniques are becoming fundamental to modern decision support systems. As massive data processing develops in its practicality, machine learning (ML) techniques applied to time series can automate and improve prediction models. The radical novelty of this paper is the development of a hybrid model that combines a new approach to the classical Kalman filter with machine learning techniques, i.e., support vector regression (SVR) and nonlinear autoregressive (NAR) neural networks, to improve the performance of existing predictive models. The proposed hybrid model uses, on the one hand, an improved Kalman filter method that eliminates the convergence problems of time series data with large error variance and, on the other hand, an ML algorithm as a correction factor to predict the model error. The results reveal that our hybrid models obtain accurate predictions, substantially reducing the root mean square and absolute mean errors compared to the classical and alternative Kalman filter models and achieving a goodness of fit greater than 0.95. Furthermore, the generalization of this algorithm was confirmed by its validation in two different scenarios." @default.
- W4309268410 created "2022-11-25" @default.
- W4309268410 creator A5003843086 @default.
- W4309268410 creator A5023829720 @default.
- W4309268410 creator A5085934712 @default.
- W4309268410 date "2022-11-16" @default.
- W4309268410 modified "2023-10-01" @default.
- W4309268410 title "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors" @default.
- W4309268410 cites W1502447176 @default.
- W4309268410 cites W1537054931 @default.
- W4309268410 cites W1995420366 @default.
- W4309268410 cites W2006866480 @default.
- W4309268410 cites W2049521815 @default.
- W4309268410 cites W2070050664 @default.
- W4309268410 cites W2089058212 @default.
- W4309268410 cites W2090192376 @default.
- W4309268410 cites W2103559015 @default.
- W4309268410 cites W2105934661 @default.
- W4309268410 cites W2329944081 @default.
- W4309268410 cites W2405547796 @default.
- W4309268410 cites W2470292068 @default.
- W4309268410 cites W2775055969 @default.
- W4309268410 cites W2784247863 @default.
- W4309268410 cites W2911302046 @default.
- W4309268410 cites W2936163520 @default.
- W4309268410 cites W2939264787 @default.
- W4309268410 cites W2940200036 @default.
- W4309268410 cites W2944675074 @default.
- W4309268410 cites W2956220464 @default.
- W4309268410 cites W2958321630 @default.
- W4309268410 cites W2963507686 @default.
- W4309268410 cites W2968096044 @default.
- W4309268410 cites W2968450801 @default.
- W4309268410 cites W2969376125 @default.
- W4309268410 cites W2969691610 @default.
- W4309268410 cites W2978376430 @default.
- W4309268410 cites W2979789375 @default.
- W4309268410 cites W2982194286 @default.
- W4309268410 cites W2991029354 @default.
- W4309268410 cites W2995124022 @default.
- W4309268410 cites W2996774226 @default.
- W4309268410 cites W2996912715 @default.
- W4309268410 cites W2997167441 @default.
- W4309268410 cites W2999700983 @default.
- W4309268410 cites W3003210915 @default.
- W4309268410 cites W3006914768 @default.
- W4309268410 cites W3008005073 @default.
- W4309268410 cites W3008696509 @default.
- W4309268410 cites W3008982768 @default.
- W4309268410 cites W3009778813 @default.
- W4309268410 cites W3010290528 @default.
- W4309268410 cites W3013002146 @default.
- W4309268410 cites W3014727196 @default.
- W4309268410 cites W3016531775 @default.
- W4309268410 cites W3030549308 @default.
- W4309268410 cites W3034752693 @default.
- W4309268410 cites W3035565291 @default.
- W4309268410 cites W3042839384 @default.
- W4309268410 cites W3043122921 @default.
- W4309268410 cites W3045041747 @default.
- W4309268410 cites W3046978353 @default.
- W4309268410 cites W3047100943 @default.
- W4309268410 cites W3083782034 @default.
- W4309268410 cites W3087204164 @default.
- W4309268410 cites W3087492453 @default.
- W4309268410 cites W3088023672 @default.
- W4309268410 cites W3093162609 @default.
- W4309268410 cites W3106973085 @default.
- W4309268410 cites W3111115317 @default.
- W4309268410 cites W3111217629 @default.
- W4309268410 cites W3111530821 @default.
- W4309268410 cites W3113054716 @default.
- W4309268410 cites W3114729326 @default.
- W4309268410 cites W3115452202 @default.
- W4309268410 cites W3118925381 @default.
- W4309268410 cites W3119688513 @default.
- W4309268410 cites W3120333729 @default.
- W4309268410 cites W3128031213 @default.
- W4309268410 cites W3128531940 @default.
- W4309268410 cites W3130130308 @default.
- W4309268410 cites W3135871359 @default.
- W4309268410 cites W3138886979 @default.
- W4309268410 cites W3139023302 @default.
- W4309268410 cites W3144375529 @default.
- W4309268410 cites W3146173695 @default.
- W4309268410 cites W3148991373 @default.
- W4309268410 cites W3148992276 @default.
- W4309268410 cites W3159743384 @default.
- W4309268410 cites W3159781301 @default.
- W4309268410 cites W3165822366 @default.
- W4309268410 cites W3176129500 @default.
- W4309268410 cites W3196345400 @default.
- W4309268410 cites W3196636665 @default.
- W4309268410 cites W3197014520 @default.
- W4309268410 cites W3198836029 @default.
- W4309268410 cites W4200328332 @default.
- W4309268410 cites W4210965700 @default.
- W4309268410 cites W4211170086 @default.